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Abstract

Optimization algorithms are pivotal in advancing various scientific and industrial fields but often
encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which
makes the convergence to reasonable or near-optimal solutions particularly challenging.

This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that
innovatively combines the principles of the gradient descent method with periodic uniform perturbation
sampling to effectively circumvent these impediments and lead to better solutions whenever possible.
SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting
the steepest loss difference relative to the current solution. It enhances the traditional gradient
descent approach by integrating a strategic exploration mechanism that significantly increases the
likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes
effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages
the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for
global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D
component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement
over six established methods, particularly on response surfaces with complex topographies and in
multidimensional non-convex continuous optimization problems. Comparative analyses with established
2D benchmark functions over 30 randomized initial points highlight SPGD’s robustness and reliability
in non-convex optimization. These results emphasize SPGD’s potential as a versatile tool for a wide
range of optimization problems.

1 Introduction

Mathematical optimization is a fundamental process in engineering, science, and economics. Its main
objective is to find solutions that minimize a predefined objective, typically expressed in terms of a
real-valued function, while adhering to given constraints. This pursuit of optimal solutions is crucial
in solving complex problems, where achieving the best possible results necessitates a careful balance of
numerous factors and variables.

Among the many optimization techniques available, the gradient descent (GD) method stands out
as a foundational and extensively used tool, and its origins can be traced back to Cauchy’s pioneering
work [1]. However, despite its widespread use, the gradient descent method has certain limitations. One
of its major drawbacks is its tendency to get trapped in sub-optimal states, including saddle points and
local minima, which may offer minimal improvement in solution quality. Additionally, the method may
encounter difficulties in making progress towards the desired outcome when faced with flat regions in the
problem space.
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To address these challenges, extensive research efforts have been focused on enhancing the performance
of the gradient descent method. As a result, numerous variants have been developed, each specifically
designed to overcome the aforementioned pitfalls [2]. One notable variant is the Perturbed Gradient Descent
(PGD), which has gained attention for its ability to navigate away from saddle points and potentially
converge towards second-order optimal points [3].

In this paper, we present a strategic randomized perturbation algorithm combined with the gradient
descent method, leveraging the strengths of both exploring the search space through randomized perturba-
tion and converging to optimal points using gradient information. By introducing cyclical perturbations,
our approach strategically balances the need for exploration with the efficiency of exploitation. Moreover,
applying perturbations periodically rather than at every iteration significantly reduces computational
costs, making the optimization process more efficient without sacrificing the thoroughness of the search.
It promises a more reliable pathway to discovering superior solutions, thereby expanding the horizon of
possibilities in optimization challenges. This enhanced method is designed not only to navigate more
effectively through the complexities of practical optimization landscapes but also to refine the search for
optimal solutions with greater precision.

The remainder of this paper systematically explores the Steepest Perturbed Gradient Descent (SPGD)
algorithm and its comparative advantages in the domain of optimization. Section [2| delves into a variety
of related methodologies, focusing on variants of the gradient descent method and the integration of
perturbation sampling techniques. These approaches establish a foundation for understanding the landscape
of optimization strategies and highlight the necessity for innovations, such as SPGD. Section [3]is dedicated
to a detailed exposition of the SPGD algorithm itself, including its theoretical underpinnings, algorithmic
structure, and the rationale behind its design choices. Following this, Section [5| presents numerical results
from a series of experiments designed to evaluate the performance of SPGD against various established
optimization algorithms. These experiments are conducted on a selection of well-known optimization
test functions, providing a rigorous comparison and demonstrating the practical implications of SPGD in
addressing complex optimization challenges. Finally, Section [6] discusses the outcomes of these comparisons,
emphasizing the superior performance of SPGD over the methods analyzed. The conclusions not only
underscore the effectiveness of SPGD but also set the stage for future research directions and potential
applications in broader optimization contexts.

2 Related Work

The gradient descent (GD) method is a first-order optimization algorithm that updates the design variables
in the direction opposite to the gradient of the objective function with respect to those variables [2]. Tt’s
widely used due to its simplicity and efficiency in convex problems. The gradient descent method converges
to a local optimal solution with a mathematical guarantee. Gradient descent tends to exploit local
information to improve the solution iteratively. However, it may not explore the search space effectively,
potentially getting trapped in local minima or saddle points, particularly in non-convex optimization
landscapes. GD is known to struggle with flat areas where the gradient is close to zero, leading to slow or
no progress [3].

Nesterov’s Accelerated Gradient (NAG) method enhances traditional gradient descent by incorporating
a forward-looking step. This tweak allows the optimizer to anticipate future gradients, reducing oscillations
and speeding up convergence, particularly in convex settings. NAG is highly effective in training deep
neural networks due to its efficiency in navigating high-dimensional data spaces. However, its performance
can vary in non-convex environments with complex landscapes [4,5]. For a comprehensive overview of
gradient descent and its variants, we refer readers to [2], which synthesizes developments across machine
learning and optimization literature.

Simulated annealing (SA) [6] and genetic algorithm [7] are heuristic sampling-based optimization
algorithms that use randomness and selection mechanisms inspired by natural processes to explore the
solution space and select the best candidates for further iteration. These algorithms can be used for
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different types of optimization problems, such as continuous, discrete, non-convex, and multi-objective
problems [8,9]. These methods may require significant computational resources and careful tuning of
parameters (e.g., temperature in simulated annealing or mutation rate in evolutionary algorithms) to
balance exploration and exploitation effectively.

Bayesian optimization (BO) is one of the sampling-based global optimization methods that has gained
popularity, particularly in machine learning, for solving expensive black-box optimization problems. BO
methods approximate the objective function using a surrogate probabilistic model, typically a Gaussian
process (GP), which models the underlying function based on observed sample points [10,/11]. These
methods balance exploration and exploitation by combining prior beliefs with posterior updates after
each observation. The acquisition function, derived from this surrogate model, guides the search by
quantifying the expected improvement or uncertainty in unexplored regions. Although BO is highly
sample-efficient and effective in finding global optima with a limited number of function evaluations,
especially in low-dimensional problems, it can be computationally expensive due to the cost of updating
and optimizing the acquisition function at each iteration. Moreover, the performance of BO degrades
in high-dimensional or highly non-smooth optimization landscapes [12]. A broader discussion of such
sampling-based approaches can be found in [13], a recent survey on non-smooth optimization methods,
including gradient sampling and probabilistic techniques.

Stochastic gradient descent (SGD) is a well-known optimization algorithm widely utilized in the
training step of neural networks due to its efficiency in handling large datasets. Its capability to introduce
randomness through mini-batches helps in escaping local minima, making it particularly suitable for
large-scale machine learning problems where mini-batch sampling provides natural stochasticity [14]. The
utilization of SGD presents an alternative view by adjusting parameters with a randomly chosen subset
of data rather than the complete dataset, thereby injecting noise into the gradient approximations. By
contrast, our SPGD is designed for deterministic nonconvex optimization problems where full gradients are
available, and the challenge lies in escaping saddle points and local minima rather than handling stochastic
gradients.

In the exploration of hybrid optimization methods, a notable approach combines the exploratory
strengths of Simulated Annealing (SA) with the precise, local search capabilities of Gradient Descent
(GD). This method strategically employs SA to break free from local optima by conducting a thorough
search for a more promising solution candidate, upon which GD resumes. While this synergy offers a
dynamic pathway to escape local minima, it introduces a significant computational burden. Moreover, this
method diverges from traditional GD in that it cannot rely on the norm of the gradient as a criterion for
termination. This alteration results in a less stringent stop condition, potentially affecting the algorithm’s
efficiency and termination reliability [15].

Another hybrid technique is perturbed gradient descent (PGD) that addresses the challenge of
stagnation—a state where the gradient becomes negligible, and no further progress seems attainable in
optimizing the objective function. This method introduces a single perturbation to the current solution
when progress halts, effectively nudging the search process out of stagnation before proceeding with
GD. This approach demonstrates an ability to escape saddle points effectively [3,[5,/16]. However, its
performance is notably diminished in flat regions of the search space, where such perturbations fail to
provide a meaningful direction for improvement.

In addition to the deterministic and heuristic methods previously discussed, the random walk method
offers a stochastic approach to optimization that is particularly advantageous in complex, non-convex
landscapes. Random walks operate by making a sequence of moves, each determined randomly in terms of
direction and step size. This method inherently avoids the common pitfalls of gradient-based approaches,
such as becoming trapped in local minima, by facilitating an unbiased exploration of the solution space. This
characteristic is critical when dealing with high-dimensional optimization problems where the landscape
is riddled with numerous local optima and saddle points [17]. Despite their potential for encompassing
space exploration, random walks are often criticized for their inefficiency and slow convergence, especially
in large-scale problems. They require a large number of iterations to approach the vicinity of a global
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optimum, as their exploration process lacks directionality inherent to methods like gradient descent or
even simulated annealing. To address these limitations, researchers have explored hybrid strategies that
combine the exploratory strengths of random walks with more systematic search techniques to balance
exploration with exploitation more effectively [18.|19].

3 Methodology: SPGD

Traditional gradient descent algorithms efficiently exploit local gradient information to improve solutions
iteratively. To minimize a given function f : R — R, the updating rule at each iteration is [3]:

Xi+1 = X4 — OéVf(Xl) (1)

where ¢ is the number of current iteration, a > 0 is the step size, and V f is the gradient of f.

However, in non-convex high-dimensional problems, the gradient descent method can become trapped
in local minima or saddle points, missing out on globally optimal configurations. To address this limitation,
we propose a novel algorithm that combines gradient descent with periodic randomized perturbations.
These perturbations are particularly effective in non-convex, high-dimensional problems, where even
small modifications can significantly alter the solution’s position within the search space. This sensitivity
to perturbations is crucial in navigating the complex terrain of such problems, where the landscape of
potential solutions is riddled with local optima. By introducing strategically randomized perturbations, our
algorithm enhances its ability to escape these local optima, thereby facilitating a more extensive exploration
of the solution space. This periodic application of perturbations is key to avoiding the oscillatory behavior
often observed in optimization trajectories of sampling-based methods, which can lead to inefficiencies and
slow convergence. This approach becomes particularly advantageous in complex optimization scenarios
characterized by challenges such as flatness, ruggedness, or saddle points of the objective surface, where
conventional optimization algorithms might falter in making meaningful progress.

These perturbations are drawn from uniform random distributionsE] with constant amplitude proﬁles{ﬂ
The uniform random distribution will create Np perturbed candidates around the gradient descent solution
every Iterp iterations. All perturbed candidates will be evaluated and compared with the gradient
descent solution. If the minimum value of perturbed candidates is equal or less than the value of the
gradient descent solution, the corresponding perturbed candidate will be selected as the new solution. This
policy of accepting solutions with equal objective values intentionally increases the algorithm’s emphasis
on exploration over exploitation within the optimization process. Such an approach is particularly
advantageous in scenarios where the objective surface is flat, and traditional gradient descent methods stall
due to insufficient gradient information. By facilitating exploration in these flat regions, SPGD ensures
continued progress towards finding a global optimum, preventing the algorithm from becoming prematurely
anchored to suboptimal solutions. The pseudo code of SPGD algorithm is described in Algorithm [1]

In the SPGD algorithm, the method of applying perturbations is adaptable to the specific requirements
of the optimization problem at hand. For unconstrained optimization problems, such as 2D test function
benchmarks and neural network training, perturbations are applied simultaneously to all variables, utilizing
a uniform distribution with a constant amplitude. This ensures a broad, uniform exploration of the
solution space, which is generally suitable for the landscapes presented by these types of problems.

However, when dealing with constrained problems like the 3D component packing, which present a
complex optimization landscape, a different approach is warranted. In such scenarios, perturbation of a
single variable can potentially lead to an infeasible solution or a worse candidate due to the constraints

2Having a uniform distribution allows us to sample the solution space around the current solution uniformly within the
range of [—Amp, +Amp]. This approach leads to more explorative sampling by equally covering the vicinity around the
current position, rather than concentrating on the immediate area around the current solution or extending far beyond it.

3The main reason for choosing a constant amplitude profile is to maintain the simplicity of the algorithm in these benchmark
functions. However, the amplitude profile (Amp) can be adjusted to any arbitrary profile based on the specific requirements
of the optimization problem at hand.
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Algorithm 1 Steepest Perturbed Gradient Descent (SPGD)
1: Input: step size a > 0, period Iterp € N, amplitude Amp > 0, candidates Np € N, horizon Iteryax
2: Initialize xq; set i < 0
3: while i < Iter.x do

4: if ¢ mod Iterp # 0 then > plain GD
5: X4l < X; — OéVf(Xz)

6: else > perturbation round (best-of-Np)
7 for j =1to Np do

8: sample £ ~ Unif (Bo(Amp)) > ball of radius Amp
9: ng) — X; + §(j)

o W F(x9)

11: end for '

12: J* € argminjen, ylm

13: if f(xz(j*)) < f(x;) then

14: Xi41 < Xz(j*)

15: end if

16: end if

17: 1 1+1
18: end while

involved. To mitigate this, each variable is perturbed separately, effectively reducing the complexity and
dimensionality of the optimization problem by focusing on one variable at a time, with all others held
constant [20]. This targeted perturbation allows for a more controlled exploration of the solution space,
ensuring that the search remains within feasible regions and is more likely to improve upon the current
solution. This adaptive feature is designed to tailor the exploration process more precisely to the problem’s
landscape, enhancing the algorithm’s flexibility and effectiveness in navigating constrained environments.

The parameters of SPGD, notably the number of perturbations Np, the perturbation interval Iterp, and
the perturbation amplitude Amp, play crucial roles in shaping the algorithm’s behavior and performance.
Increasing Np enhances the likelihood of discovering superior solutions by broadening the search during
perturbation phases, albeit at a higher computational cost. A smaller Iterp amplifies the algorithm’s
exploratory behavior, contributing to a more thorough search of the solution space but also increasing
computational demands and leading to more oscillatory convergence patterns. Conversely, selecting a
larger Amp facilitates wider exploration of the search space, though its effectiveness is highly contingent
on the specific problem being addressed. For problems where small variations in inputs lead to significant
changes in outputs, a large amplitude may not yield beneficial results, underscoring the importance of
parameter tuning to align with the problem’s characteristics.
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Figure 1: Optimization paths of GD and SPGD on f(z) = 2* — 322 + z, showing how SPGD escapes local
minima and converges to the global solution.

To demonstrate the execution flow of the SPGD algorithm, we provide a visual comparison with
traditional gradient descent (GD) in Figure [l applied to a non-convex function defined by f(z) =
x* — 322 4+ 2. This landscape features both a local minimum and a global minimum, offering an ideal
setting to showcase the strengths of SPGD in escaping poor regions of convergence. In figure[I, GD is
seen following the steepest descent path, ultimately settling at the local minimum without the ability to
recover. This behavior is the characteristic of gradient-based methods in non-convex landscapes, where
they are prone to getting trapped due to the absence of global information or exploration strategies.

The SPGD algorithm, on the other hand, begins similarly by following the gradient descent path,
represented by the green line, for a fixed number of iterations. After Iterp iterations, the perturbation
phase is triggered. At this point, SPGD generates Np candidates (depicted as black 'x’) around the current
position. These candidates explore the vicinity of the solution space, identifying potential points with
lower function values. The most promising candidate, offering the lowest function value (shown as blue
'+7), is then compared to the current position. As depicted, this candidate yields a better function value
and is thus chosen, causing the algorithm to make a significant "jump" to this new point. In the figure
this is reflected in the trajectory of SPGD deviating from the region of slow progress of local minimum
and moving toward the global one. The process then resumes with gradient descent steps leading to faster
convergence to the optimal solution. As a result, SPGD not only avoids becoming stuck in local minima
but also achieves convergence with fewer function evaluations compared to methods that either rely solely
on gradients or purely stochastic exploration. This example highlights how SPGD’s structure, consisting
of gradient-based updates interleaved with perturbations, contributes to both its robustness and efficiency
in solving non-convex optimization problems.

4 Overview of the Analysis

We present a self-contained analysis of Steepest Perturbed Gradient Descent (SPGD) under standard
smooth nonconvex assumptions. We discuss two options:

1. Baseline (no rollouts, our current implementation in algorithm : At each perturbation
round, our method samples Np candidates, scores their immediate objective values, selects the best
immediate candidate if better than the non-perturbed (current) value, and then continues plain
gradient descent (GD) until the next round. We show in this section that this variant has the same
theoretical convergence rate to an approximate second-order stationary point (SOSP) as the classical
Perturbed-GD (PGD). However, our numerical experiments described in section |5 show that this
version of SPGD performs significantly better than PGD on standard optimization benchmark tests.



Vahedi & Ilies, ASME JMD, 147(7), 2026. 4 OVERVIEW OF THE ANALYSIS

2. Possible Extension to Perturbations with Rollouts: Alternatively, one can still sample Np
seeds at a perturbation round, but instead of using their immediate values, run 7-step GD trajectory
(a “rollout”) from each seed, followed by the selection after T steps. This strategy aligns the selection
rule with the PGD escape lemma and yields a true probability amplification 1 — (1 — po)N P at the cost
of additional computations.

The notation and symbols used in this section can be found in appendix [B| and follow those in [3].

4.1 Preliminaries

Assumption 4.1 (Smoothness and lower boundedness). The objective f : R* — R is twice continuously
differentiable and

(i) has ¢-Lipschitz gradient: ||V f(x) — Vf(y)|2 < ¢|lx —y||2;
(ii) has p-Lipschitz Hessian: ||[V2f(x) — V2f(y)|lop < plIx — ¥ll2;
(iii) is lower bounded: f* :=infy f(x) > —oc.

These are standard in perturbed GD analyses; (i) yields the descent lemma - see appendix [A} (ii) controls
third-order effects in the saddle-escape argument [3]; (iii) lets us telescope decreases using Ay = f(xq) — f*.

Definition 4.2 (Approximate Second-Order Stationary Point (SOSP)). Given € > 0, a point x* is an
(€,/P€)-SOSP if ||V f(x*)|l2 < € and Amin(V2f(x*)) > —/pe. The curvature threshold ,/pe is the natural

scale under standard Hessian-Lipschitz assumptions as in [3].

Throughout the analysis, points with large gradient are treated as descent region, points with small
gradient but significant negative curvature as strict saddles, and the remaining small-gradient, no-negative-
curvature region as the target SOSP region.

Shared quantities and their roles

o Step size: o = ¢/{ with small universal ¢ € (0, 1]. This step size ensures f(x;41) < f(x:)— %[V f(x:)|?
on non-perturbed steps - see appendix [A]

L d
\//Te 6round
curvature of size /pe and realize a decrease Q(e?/f) with high probability.

log

« Escape horizon: 7 = 6( ). With a = ©(1/¢), 7 GD steps are enough to exploit negative

+ Perturbation amplitude: Amp = 6((¢/f),/log =%—). Radius /¢ is the scale at which a successful

6rouud

seed enables O(€2/f) decrease; the y/log factor shrinks the stuck-region volume.

e Period between perturbations: Iterp. In the no-rollout case (section Iterp is any fixed period
at which a single try is attempted; In the rollout strategy (section [4.3) we would select Iterp = 7.

o Number of candidates: We select Np € N seeds per round, i.i.d. (independent and identically
distributed) from the uniform distribution Unif(B(0, Amp)).

o Failure budgets: total budget § € (0,1); if there are R rounds, we set d;oung = d/R so a union
bound yields total failure < 4.
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4.2 Baseline: Convergence without Rollouts (Current SPGD Implementation)

As mentioned above, our current implementation of SPGD samples Np candidates at each perturbation
round, evaluates their immediate objectives, and selects the best immediate candidate. If the chosen
candidate does not worsen the objective, we continue plain GD with the chosen candidate until the next
perturbation round after Iterp steps.

Although we evaluate only the immediate objective values, this baseline mirrors the logic of the PGD
perturbation step. In PGD, after injecting a single perturbation in regions where the gradient is small, one
runs a 7-step trajectory to test whether the perturbed point ultimately leads to a decrease in the objective
beyond a fixed threshold; a perturbation is “successful” precisely when it places the iterate into a region
from which GD can make progress. SPGD checks the same condition directly at the perturbation step:
among the sampled candidates, we accept only if the corresponding objective value is no worse than the
current iterate. However, the rounds occur after Iterp steps regardless of the gradient value.

When SPGD perturbation rounds occur near small-gradient regions, which is the same setting in which
PGD perturbs, this immediate non-worsening rule serves the same purpose as PGD’s rollout test and
therefore inherits the same saddle-escape guarantees. Furthermore, drawing multiple candidates increases
the chance of sampling a promising direction, and never performs worse than a single PGD perturbation.
We have demonstrated this on standard benchmark tests through ample experiments described in section
Bl

The following theorem states the resulting guarantee for this conservative setting.

Theorem 4.3 (Baseline convergence without rollouts). Suppose Assumption holds and suppose
€ < 0?/p. Choose a stepsize a = ¢/l (small enough) with ¢ € (0,1], as well as Amp and 7 = Iterp as
described above. At each perturbation round i (separated by a period Iterp), draw Np i.i.d. perturbations
¢U) ~ Unif(B(0, Amp)); set xz(j) = x; + €U with ygj) = f(xz(j)); and then select the most promising seed
from the Np objectives as compared with the non-perturbed objective. Next, run plain GD for T = Iterp
steps before the next round.

Then there exists a dimension—dependent constant po > 1/poly(d) (same as in the PGD stuck—set
analysis from [3]) such that the algorithm outputs an (e, \/pe)-SOSP, with probability at least 1 — 0, and
within

O(ﬁgf) iterations, Ag = f(xo) — f~
Proof sketch:

(i) Descent away from stationarity: For any non-perturbed step with a = ¢/¢, f(x;+1) < f(x;) —
2|V f(x;)]|?. Hence whenever ||V f(x;)|| > €, we decrease f by Q(e?/¢). Summing until entering the region
{IIVf]l < e} uses at most O(¢A/€?) iterations.

(ii) Escape from strict saddles: If |V f(x;)|| < € and Amin(V2f(x;)) < —y/p€, the PGD analysis of [3]
shows that a random seed ng) = x; + &) with radius Amp and horizon 7 = ©(¢/,/pe log(d)) lands in an
escape region with probability at least pg > 1/poly(d). These PGD successful seeds are guaranteed to
satisfy the non-worsening condition, f (xl(-] )) < f(x;) (a necessary condition for escape) and are therefore
accepted by SPGD. Since SPGD performs at least as well as PGD on a single sample, the per-round
success probability is at least pg

(iii) Union bound and total iterations: Let R be the number of rounds, and set d;oung = 0/R. By the
union-bound (i.e., Boole’s inequality [21]) across rounds we obtain a total success probability of at least
1 — §. Aggregating decreases from (i)-(iii) yields the iteration bound O(¢A £/€2).

Remark 4.4 (Multiple immediate seeds vs. single-try guarantee). While the non-worsening rule

(f (ng )) < f(x;)) is a necessary precursor for a successful 7-step escape, the immediate objective selection
alone is not sufficient to guarantee that the selected seed lands in the PGD escape region. Therefore, in
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the worst-case analysis, we rely solely on the success probability pg guaranteed by PGD’s single-sample
distribution. The multiple sampling factor Np, which dramatically improves empirical results by acting as
a strong geometric filter, is thus asymptotically nullified in the worst-case bound O(/A £/€2), leading to
the same proven complexity as PGD.

Compute cost (no rollouts). We follow one GD trajectory between perturbations (rounds), as in
PGD. Scoring Np immediate candidates at each round adds O((T'/Iterp) - Np) function evaluations; if
forward passes are “cheap” compared to gradients (or the round’s gradient can be reused), the overhead is
modest. Crucially, since the total gradient complexity remains O(T'), this variant preserves the “almost
dimension-free” scaling property (polylog(d) dependence) of classical PGD.

4.3 Possible Extension: Convergence with Best-of-Np Rollouts

Importantly, we could make SPGD reliably find an approximate second-order stationary point in about
O(EA ¢/ €2) gradient steps by slightly changing how we use perturbation at the cost of additional computa-
tions. Specifically, instead of drawing one random perturbation and committing to it, at each “perturbation
round” we could draw Np random seeds around the current point, run a short gradient descent rollout from
each seed for a fixed number of steps 7, and then continue the algorithm from whichever seed achieved the
lowest objective value after those 7 steps. Between perturbation rounds we would just carry out normal
gradient descent so we can only spend about O(¢A 7/€?) iterations before the gradient becomes small.
In the neighborhood of a region where the gradient is small but there is a strongly negative curvature
direction (a strict saddle), prior analyses [3] show that a single random perturbation followed by 7 gradient
steps has a nontrivial probability (at least 1/poly(d)) of making a significant decrease in the function value.
By running Np independent rollouts in parallel and picking the best one, we can amplify this success
probability to be very close to one in each round. With appropriate choices of step size, perturbation
radius, rollout length 7, and number of seeds Np tied to the smoothness and curvature parameters of the
function, we could guarantee that each time we approach a strict saddle we escape it quickly with high
probability.

Because the theoretical escape event is defined in terms of improvement after 7 steps, selecting the
best candidate at time ¢ 4+ 7 ensures that whenever a seed produces the escape, the decrease corresponding
to the chosen seed is at least as large as the guaranteed decrease from that event.

4.3.1 Time and Compute Complexity for the Best-of-Np Rollouts Case

Denote by T = O(¢A/€?) the total number of GD iterations until termination. Let R < T/Tterp be the
number of perturbation rounds, and recall 7 = Iterp.

Gradient evaluations In this scenario, we would always execute 1" gradient steps along the selected
path. In addition, at each round we roll out Np — 1 extra seeds for 7 steps that are discarded after
selection. Thus the total number of gradient evaluations would be

T+ R(Np—1)7 =T +

Np —1)Iterp = O(NpT).
Iterp (Np ) P (NpT)
Hence amplification would trade a linear (in Np) increase in computational cost for a much smaller
per-round failure probability.

Function evaluations If the implementation can reuse the round’s gradient V f(x;) for all seeds and
only needs forward evaluations to score candidates after rollout, the additional forward cost per round
is O(Np 1) (often cheaper than Np 7 full gradient steps). Otherwise, the cost scales comparably to the
gradient bound above.
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Asymptotic Iteration Order For Both Strategies These Np rollouts would buy us a higher per-
round reliability (smaller failure probability, so better constants/ polylogﬂ but they would not increase
the per-success decrease nor the per-step decrease in large-gradient regions. That is why both approaches
are expected to have the same asymptotic iteration order O(£ Ay/ 62).

4.4 Comparison with PGD

Both variants match PGD’s iteration complexity O(¢A/€?) to reach an (e, \/pe)-SOSP. We note that our
extensive experiments described in section [5] demonstrate that the no-rollout SPGD of section performs
significantly better than PGD on standard benchmark functions due to a better selection of candidates
from the neighborhood. A careful analysis between the tradeoff between efficiency and accuracy of the
rollout mechanism as well as its implementation are outside the scope of this paper, but are certainly a
logical next step. This is so because the rollout variant of section trades, as already mentioned, an
O(Np) compute factor for an exponentially reduced per-round failure.

5 Numerical Results

We present here a thorough evaluation of the proposed Steepest Perturbed Gradient Descent (SPGD)
algorithm, comparing its performance against several established optimization methods. The comparison
includes traditional gradient descent (GD), Perturbed Gradient Descent (PGD), MATLAB fmincon
function, which is a versatile solver for constrained optimization problems [23], and the fminunc function,
which is tailored to unconstrained optimization problems [24], along with Simulated Annealing (SA) [25],
and Bayesian Optimization (BO) [26].

Our initial analysis is conducted through the lens of four challenging 2D benchmark functions, selected
for their known difficulties and relevance in assessing optimization algorithms’ efficacy. These test functions
are recognized benchmarks within the optimization community, providing a diverse set of landscapes to
evaluate each algorithm’s ability to navigate complex, non-convex, and potentially deceptive optimization
spaces [27]. For each test function, we apply fmincon, Simulated Annealing, traditional gradient descent,
PGD, and SPGD, meticulously recording and analyzing the results. The SPGD and PGD algorithms were
each fine-tuned independently to ensure optimal performance while maintaining a fair basis for comparison.
Due to the high computational cost of Bayesian Optimization (BO), the maximum number of function
evaluations for BO is capped at 100 to ensure reasonable execution time across benchmark functions. For
the fmincon function, we use MATLAB’s default interior-point algorithm, while the fminunc function is
configured to use the trust-region method, which is well-suited for smooth, unconstrained problems. In
both cases, the gradient of the objective function is explicitly provided to guide the optimization process
more efficiently.

Key performance indicators include the accuracy of the solution, measured by the proximity to the
known global optimum [28]; the computational efficiency, quantified by the number of function evaluations
and CPU execution time. For each test function, both a 3D and top-view surface plot of optimization
trajectory visualization are provided to aid in understanding each algorithm’s optimization landscape
and behavior. These visualizations illustrate how optimization paths evolve over complex response
surfaces and help highlight differences in convergence dynamics. Simulated Annealing (SA) and Bayesian
Optimization (BO) are excluded from these visualizations, as their probabilistic sampling strategies tend
to densely populate the landscape, obscuring the trajectories of other algorithms and reducing the overall
interpretability of the plots. The source code for the SPGD algorithm, along with comparative analyses
against methods discussed in this paper using additional 2D challenging test functions, are publicly
accessible on GitHuh?l

Oo(1)

“We use the notation polylog(n) to denote a polynomial in logn, i.e., polylog(n) = (logn) . Accordingly, we write

O(f(n)) for O(f(n)) := O(f(n) polylog(n)); see, e.g., [22].
Source code and comparisons available at: https://github.com/Anir-M-Vahedi/SPGD-Benchmark-Functions
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Test function 1

The MATLAB Peaks function [29] presents a formidable challenge for optimization algorithms due to
its intricate landscape, which features one global minimum, multiple local minima, a saddle point, and
extensive flat regions. This complexity makes the Peaks function a critical benchmark for assessing the
capabilities of optimization techniques, particularly those based on gradient descent. Traditional gradient
descent methods often struggle with such landscapes, as they can easily become trapped in local minima or
stall in flat areas, failing to make significant progress towards the global optimum [30]. The mathematical
expression defining the Peak test function is given as follows:

1)2_ 42 2 ef(erl)Q*yQ 9 9 3 5
flz,y) =3e WH) =" (z —1)? - 3 +e ¥ 7Y (10x —2x+10y) (2)
It has a global minimum point located at x = 0.2283, y = —1.6256 with an optimal function value of

f(z*) = —6.5511. The initial condition is chosen randomly to be (—2.81,—1.47), and the Amp is set to
2.5. Figure and illustrate the 3D view and top view of the optimization trajectory across the
Peaks function surface. The total number of function evaluations, the converged optimal value, and CPU
execution time for different methods are given in Table [I Based on the results depicted in Figures
and performance metrics in Table [1} it is evident that the GD, PGD, and fminunc algorithms become
trapped in local minima. In contrast, the fmincon, SA, BO, and SPGD algorithms successfully converge
to the global optimum. Among these three, SPGD demonstrates the lowest computational cost. Notably,
despite the fmincon and BO method having fewer function evaluations, their CPU times are more than
25 and 2000 times greater than that of the SPGD algorithm.

Table 1: Peaks function Performance

Algorithm Total Fun. Evaluations f(z*) = —6.5511 CPU Time[ms]

GD 1472 -3.0498 *3.12
PGD 1599 -3.0498 *3.88
fminunc 10 -3.0498 *23.25
fmincon 60 -6.5511 57.37
SA 1341 -6.5511 117.8327
BO 100 -6.5510 4415.7
SPGD 274 -6.5511 2.03

Test function 2

The Ackley function is a well-known non-convex optimization benchmark that poses a significant challenge
to optimization algorithms, particularly due to its deceptive landscape characterized by a global optimum
surrounded by a multitude of local minima [31]. This function is specifically designed to test the ability
of optimization methods to escape local minima and efficiently search for the global optimum in a
complex, multidimensional space. The Ackley function’s landscape features a large number of local minima
leading towards the global minimum, making it an exemplary test case for evaluating the robustness and
effectiveness of algorithms against the risk of premature convergence. The global minimum of the Ackley
function is located at the origin (z = 0, y = 0), with an optimal function value of zero (f(z*) = 0), which
further serves as a clear target for optimization efforts. The formula representing the Ackley test function
is articulated below:

f(z,y) = —20exp (—0.2 %(a:Q + y2)> — exp <;(cos(27rx) + cos(27ry))) +20+e (3)
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(a) 3D view of the optimization trajectories. (b) Top view of the optimization trajectories.

Figure 2: Visualization of optimization trajectories for the Peaks function.

The initial condition is chosen randomly to be (—3.75,—1.96), and the Amp is set to 2.5. Figure and
illustrate the 3D view and top view of optimization trajectory across the Ackley function surface. The
performance comparisons are given in Table 2] Taking into account the data presented in the mentioned
figures and table, analysis of the Ackley test function reveals that the GD, PGD, fminunc, and fmincon
methods became ensnared in local minima. In contrast, only the SA, BO, and SPGD algorithms successfully
navigated to the global solution. Among these, SPGD not only achieved convergence with greater precision,
approaching closer to the global optimum, but also demonstrated a computational speed, with the CPU
execution time being about 13 (SA) and 359 (BO) times faster than its counterparts.

Table 2: Ackley function Performance

Algorithm Total Fun. Evaluations f(z*) =0 CPU Time[ms]

GD 327 9.3530 *2.01
PGD 477 6.8826 *2.02
fminunc 8 9.3530 *32.20
fmincon 24 9.3530 *75.13
SA 504 2.13e-4 40.63
BO 100 0.0213 4670.0
SPGD 1501 4.81e-4 3.62

Test function 3

The Easom function stands as a notable unimodal steep ridge [27] test function within the realm of
optimization, particularly distinguished by its singular global optimum that resides in an extensive flat
area. This flat region is characterized by minimal gradient variations, presenting a unique challenge for
optimization algorithms, especially those reliant on gradient information to navigate the search space. The
function is defined over a domain of (—100, 100) for both z and y dimensions, emphasizing the necessity
for optimization techniques to efficiently explore large search areas to locate the optimum [32]. The
significance of the Easom function as a test scenario with simple mathematical formulation lies in its ability
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(a) 3D view of the optimization trajectories. (b) Top view of the optimization trajectories.

Figure 3: Visualization of optimization trajectories for the Ackley function.

to simulate real-world optimization problems where the solution space is largely homogeneous, yet contains
a singular, critical point of interest. This function tests the exploration strategies of algorithms, challenging
them to avoid the pitfalls of vast non-informative regions. It emphasizes the importance of balance
between exploration and exploitation, as effective optimization methods must not only navigate vast spaces
efficiently but also recognize and converge to the global optimum with high precision. Mathematically,
the Easom function’s global optimum is uniquely situated at (z = m, y = 7), where it attains a value of
f(z*) = —1. The formula of the Easom test function is provided below:

f(@,y) = = cos(z) cos(y) exp (= ((z = ™)+ (y — m)?)) )

The initial condition is chosen randomly to be (69.33,12.23), and the Amp is set to 5. Figure 4al and
illustrate the 3D view and top view of the optimization trajectory across the Easom function surface. The
performance comparisons are given in Table [3] Reflecting on the performance metrics for the Easom test
function, it is evident that only the SPGD algorithm successfully pinpointed the global optimum. As
anticipated, GD was hindered in its progression by the minimal gradient values inherent to the function’s
extensive flat regions. Similarly, both GD and the fmincon method failed to escape these flat expanses,
effectively becoming ensnared within them. Among the competing methods, only SA and BO managed
to navigate towards a more favorable outcome, yet they fell short of achieving convergence to the global
optimum, underscoring the distinctive effectiveness of SPGD in this scenario.

Test function 4

The Levy Function No. 13, characterized by its multimodality and non-convexity, presents a unique
challenge for optimization algorithms with its single global optimum amidst a noisy, periodic distribution
of local minima. This function tests an algorithm’s precision in distinguishing the global optimum from
numerous suboptimal states, a key trait for solving complex real-world problems. It serves as a critical
benchmark for evaluating the balance between exploration and exploitation in optimization techniques,
underscoring its significance in both theoretical and practical applications. The global optimum of this
function is strategically located at (z = 1, y = 1), where it attains a value of f(z*) = 0. The expression
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Table 3: Easom function Performance

Algorithm Total Fun. Evaluations f(z*) = —1 CPU Time[ms]

GD 1 0 *0.08
PGD 2021 0 *3.28
fminunc 1 0 *58.35
fmincon 1 0 *83.84
SA 1009 -3.38e-160 *69.60
BO 100 -6.22e-215 *6866.9
SPGD 6001 -1 7.45
(a) 3D view of the optimization trajectories. (b) Top view of the optimization trajectories.

Figure 4: Visualization of optimization trajectories for the Easom function.

for the Levy Function No. 13 is detailed below [33]:
f(z,y) = sin?(3rz) 4 (z — 1) (1 + sin2(37ry)> + (y —1)? (1 + Sin2(27ry)) (5)

The initial condition is chosen randomly to be (—3.75,—1.96), and the Amp is set to 2.5. Figure [5aland
illustrate the 3D view and top view of the optimization trajectory across the Levy Function No. 13
surface. The performance comparisons are given in Table[dl Based on the performance analysis for this test
function, the GD, PGD, fminunc, and fmincon methods were unable to find the global optimum, getting
stuck in local minima instead. Notably, fmincon settled in a particularly poor local minimum. In contrast,
SA, BO, and SPGD successfully navigated to the global optimum. However, SPGD distinguished itself
by achieving a more accurate solution, requiring fewer function evaluations than SA, and demonstrating
faster CPU execution time compared to SA and BO.

Robustness Evaluation

To evaluate the robustness and statistical reliability of the SPGD algorithm, each benchmark function was
tested using 30 independent trials with randomly sampled initial points. All optimization algorithms were
provided with the same lower and upper bounds defining the feasible search space, and each method was
fine-tuned independently to ensure its best individual performance. The following performance criteria are
reported in Tables
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Table 4: Levy function N. 13 Performance

Algorithm Total Fun. Evaluations f(z*) =0 CPU Time[ms]

GD 2001 6.2915 *3.58
PGD 2001 6.2915 *2.58
fminunc 9 14.3717 *20.59
fmincon 20 30.5009 *53.32
SA 2018 6.78e-7 89.61
BO 100 0.0086 5241.7
SPGD 1760 2.45e-13 5.02
(a) 3D view of the optimization trajectories. (b) Top view of the optimization trajectories.

Figure 5: Visualization of optimization trajectories for the Levy function N. 13.

To evaluate the robustness of the SPGD algorithm, each test function was subjected to 30 independent
trials using randomly sampled starting points. All optimization algorithms were provided with the same
lower and upper bounds defining the feasible search space. Each algorithm was fine-tuned independently
to ensure their optimal individual performance, and consistent parameter settings were applied across all
trials to maintain fairness. The following performance criteria are reported in Tables

e ConvergedRuns. This metric reports how many out of the 30 randomized trials a given method
successfully converged to the global optimum within a tolerance of 1076.

o Fval Improvement (%) and Time Improvement (%). These metrics quantify the relative
difference between each method and SPGD, expressed as a percentage. For a given method ¢, the
percentage difference in objective value is computed as

Improvementy,,; (i) = 100 x M, (6)

(@)

where f(i) is the mean objective value of method i over 30 trials, and fspgp is the corresponding
mean for SPGD. A positive value indicates that method i performs worse than SPGD (higher
objective value), while a negative value indicates better performance. The same expression is used
for CPU time by replacing objective values with average execution times.
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o Closer (%). This metric quantifies how much closer method i is to the global optimum compared
to SPGD. Let f* denote the known global minimum of the benchmark function. Define the mean
distance to the optimum for method 7 as

d(i) = | f(i) — [*]- (7)
The closeness metric is then computed as

d(i) — dspap

Closer(z) = 100 x a0 , (8)

where dgpap is the distance for SPGD. Positive values indicate that method 7 is farther from the
optimum than SPGD, while negative values indicate that it is closer. When the comparing method
also attains the exact global optimum (i.e., d(i) = 0), this metric is not defined and is reported as
“N/A”'

For the Peaks function, SPGD successfully converged to the global optimum in all 30 trials. Only
Bayesian Optimization (BO) matched this convergence count, with Simulated Annealing (SA) achieving
29 out of 30. However, SPGD accomplished this with significantly lower computational cost, as reflected
in the Time Improvement% column of Table |5, demonstrating superior efficiency.

In the case of the Ackley function, SPGD was the only algorithm to consistently converge to the global
solution across all runs. Although GD and PGD had lower average execution times, they only succeeded
in 3 and 5 out of 30 runs respectively, making them less competitive. SPGD outperformed all remaining
methods in terms of average speed and reliability over 30 trials.

For the Easom function, none of the baseline algorithms found the global optimum in any run. SPGD
was the only method to successfully reach the global solution in all 30 trials, highlighting its robustness in
highly deceptive landscapes.

In the Levi function N.13, SPGD again demonstrated the highest reliability with 30 successful runs
out of 30. BO and SA achieved 24 successful runs each, while other algorithms failed to find the global
optimum in any trial. SPGD also demonstrated strong efficiency, with an average Time Improvement% of
99.91 over BO and 90.02 over SA.

Table 5: Average performance comparison for Peaks function over 30 random starting points

Algorithm ConvergedRuns Fval Improvement % Time Improvement % Closer %

GD 9 135.63 -5.43 100.00
PGD 9 127.32 -10.01 100.00
BayesOpt 30 0.00 99.99 N/A
SA 29 0.04 98.90 98.71
Fminunc 7 206.33 81.57 100.00
Fmincon 8 137.05 93.10 100.00
SPGD 30

The challenges presented by these test functions, including their rugged landscapes and deceptive local
minima, contain features that bear resemblance to those encountered in the energy landscape of protein
folding. This complex biological process is characterized by a similarly intricate energy landscape that
features multiple local optima (kinetic traps), rugged terrain, and steep energy barriers (sharp valleys and
hills) [34H37].

The SPGD algorithm’s performance on these test functions suggests its potential utility in addressing
the complex optimization problems inherent in protein folding. By adeptly navigating through challenging
landscapes to find global or near-global optima, SPGD could significantly contribute to bioinformatics and
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Table 6: Average performance comparison for Ackley function over 30 random starting points

Algorithm ConvergedRuns Fval Improvement % Time Improvement % Closer %

GD 3 99.97 -1240.80 99.97
PGD 5 99.97 -1079.38 99.97
BayesOpt 17 83.04 99.96 83.04
SA 27 99.15 85.82 99.15
Fminunc 5 99.97 50.29 99.97
Fmincon 8 99.96 83.92 99.96
SPGD 30

Table 7: Average performance comparison for Easom function over 30 random starting points

Algorithm ConvergedRuns Fval Improvement % Time Improvement % Closer %

GD 0 N/A -79148.81 100.00
PGD 0 444556889.89 -1822.73 100.00
BayesOpt 0 4137.02 99.97 100.00
SA 0 8841.39 78.76 100.00
Fminunc 0 N/A -724.67 100.00
Fmincon 0 N/A -277.97 100.00
SPGD 30

Table 8: Average performance comparison for Levi function N.13 over 30 random starting points

Algorithm ConvergedRuns Fval Improvement % Time Improvement % Closer %

GD 0 100.00 -1761.37 100.00
PGD 0 100.00 -1462.19 100.00
BayesOpt 24 100.00 99.91 100.00
SA 24 100.00 90.02 100.00
Fminunc 0 100.00 -140.21 100.00
Fmincon 0 100.00 34.57 100.00
SPGD 30

molecular biology by optimizing protein structures to understand their function and interactions more
accurately.

This analogy not only highlights the broader applicability of SPGD but also underscores the importance
of developing robust optimization techniques that can effectively deal with the complexities of both
mathematical functions and biological systems [38,39].

Expanding our investigation beyond conventional 2D test functions, we also apply our algorithm
(SPGD) to a 3D component packing problem, a task distinguished by its NP-hard classification [40}41].
This problem introduces a unique set of challenges, including flat area saddle points and local optima, that
further test the robustness of our approach against traditional gradient descent and simulated annealing
methods.

3D Component Packing Problem

In the 3D component packing problem, we focus on arranging 3D objects with arbitrary shapes as compactly
as possible without collision, akin to a simplified version of the interconnected systems with physical
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interactions (SPI2) problem but without considering the routing interconnections between objects [42].
Optimization methods often face challenges in this landscape, such as getting trapped in local minima or
stalling in flat areas, thus failing to advance significantly towards the global optimum. The non-convex
nature of the objective function, characterized by multiple local optima and saddle points, poses substantial
challenges to any standard optimization technique. Nonetheless, our SPGD algorithm, which integrates
randomized perturbations, is tailored to navigate these complex landscapes more effectively, demonstrating
its adaptability and enhanced performance compared to conventional techniques.

Our 3D packing scenarios presented here are specialized instances of those tackled by SPI2-F — a novel
and more general packing and layout optimization presented in [43], that performs both packing and layout
optimization of complex interconnected systems in a multi-physics environment. The specialized scenarios
presented below have been chosen to include cases that have known global optima. We note that an
efficient packing method based on Fast Fourier Transformsﬂ was introduced recently in [48], which restricts
the orientation of the objects to an axis-alignment and hence allows rotations in 90-degree increments. By
contrast, our method allows arbitrary rotations and alignments in space.

In the 3D component packing problem, our primary objectives are twofold: minimize the volume of
the bounding box containing the components (V}) while avoiding collisions between the components [43].
Therefore, we define the mathematical expression of the objective function as follows:

f=wp x V, —we x log(e + min(dist)) (9)

where w, = 20 represents the weight associated with the bounding box volume, w, =1e-4 is the weight
related to collision avoidance, € =le-5 is a small value to avoid singularity, and min(dist) denotes the
minimum distance between the spheres of different components.

The complexity and high dimensionality of this problem are underscored by the fact that each object in
our example consists of numgpnere = 100 spheres, and each component is controlled by six variables — three
for displacement and three for orientation. The problem also incorporates constraints related to collision
avoidance. To effectively navigate the highly non-convex and constrained space of the component packing
problem, our approach involves tailored adaptations to the perturbation mechanism used in the Steepest
Perturbed Gradient Descent (SPGD) algorithm. Perturbations are applied separately to the components’
displacement and orientation, ensuring a thorough optimization of both aspects of component placement.

In the early iterations, we enhance the exploration and facilitate the escape from suboptimal solutions by
accepting solutions with worse volume outcomes by a prescribed factor. This acceptance factor decreases
in a linear profile over the iterations until it reaches 1.0, at which point the algorithm only accepts
new solutions that have the same or lower volume, thus refining the search towards the most compact
configurations. Additionally, the amplitude of the perturbations for both displacement and orientation is
controlled through a lower-bounded linear profile, which ensures that perturbations decrease in magnitude
as the optimization process progresses, aligning more closely with the finer adjustments needed as the
solution space is narrowed down. To further optimize the perturbation process and avoid ineffective
perturbations, especially in cases where objects are too close to each other to allow for meaningful spatial
adjustments, the frequency of perturbations is reduced using a lower bounded linear profile. This adaptive
frequency adjustment helps prevent unnecessary computational expenditure on perturbations that are
unlikely to be accepted due to collision constraints. These strategic adaptations enable SPGD to more
effectively handle the complexities of packing diverse objects into a constrained space, making it robust
against the challenges posed by the non-convex nature of the problem.

The implementation of this algorithm is carried out in Python using the PyTorch framework, which
leverages CUDA for accelerated computation on GPUs. This setup allows for substantial improvements
in computational efficiency, essential for managing the high-dimensional space of this problem. Using
torch.autograd, we automatically compute the partial derivatives of the loss function with respect to

SFast Fourier Transforms have been previously shown to offer an elegant and efficient approach to compute collisions and
penetrations as well as shape complementarity [44(47].
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the displacement and orientation vectors of each component. This gradient information is then used to
update the component positions and orientations according to the update rule of gradient descent ,
akin to methods typically employed in deep learning optimizations. To further enhance the exploration
capabilities of the optimization process, the sequence of component perturbations is shuffled in each
iteration, promoting a more robust search through the solution space. In evaluating the effectiveness of
the SPGD algorithm, we conducted a comparative analysis with the traditional Gradient Descent (GD)
method across a series of increasingly complex packing scenarios.

The scenarios were designed to assess both algorithms under various conditions, ranging from uniform
object sizes to irregular and diverse shapes, thereby testing their adaptability and efficiency in real-
world packing challenges. Our implementation of Simulated Annealing diverged rather than converged,
particularly in complex scenarios. This divergence can largely be attributed to the restrictive collision
constraints integrated within the objective function @D, which prevent objects from moving through each
other. Unlike the approach taken in reference [41], where collision constraints were relaxed and followed
by refinement steps, our implementation maintained these constraints, leading to no evident signs of
convergence and indicating the unsuitability of Simulated Annealing for these applications.

Moreover, Perturbed Gradient Descent (PGD) was not utilized in the 3D packing problem comparison.
The reason for this is twofold: firstly, the norm of the partial derivative vector in this problem setting does
not approach zero due to the direct inclusion of collision constraints within the objective function. Secondly,
the primary cause for algorithm termination is often the occurrence of collisions between objects, which
deviates from the typical operational premise of PGD. Additionally, PGD’s poor performance in separate
2D benchmark functions, which feature complex and challenging loss landscapes, further illustrates its
limitations in navigating complicated optimization scenarios. This combination of factors reaffirms the
decision to exclude PGD from the comparative analysis in our 3D packing problem.

5.1 Initial Configuration and Setup

Before delving into the comparative results, it is essential to note that both the SPGD and GD algorithms
were initiated from the same configuration in each scenario to ensure a fair comparison. The initial
setup involved distributing the objects well within the 3D space, providing sufficient free space around
each object to avoid immediate collisions. Furthermore, the orientations of the objects were randomly
chosen, introducing additional complexity and ensuring that the problem remained challenging for the
optimizers. This initialization strategy was crucial for testing the algorithms’ abilities to effectively explore
and optimize from a non-advantageous starting point.

5.2 Experimental Scenarios and Results

The following scenarios were considered for the comparison:

e Scenario 1: Four identical rectangular boxes. In this case, the global optimum is analytically
known. Since all objects are homogeneous rectangular boxes, the minimum-volume packing config-
uration corresponds to placing the rectangular boxes without gaps and with identical orientation,
forming an axis-aligned rectangular block. For four rectangular boxes, this arrangement results in
either a 1 x 4 or a 2 x 2 layout, both achieving the same optimal bounding-box volume.

e Scenario 2: Eight identical rectangular boxes. Similar to Scenario 1, the global optimum
is known analytically. Any axis-aligned arrangement that packs all eight rectangular boxes into a
gap-free block attains the minimum possible volume. Examples include 1 x 8, 2 x 4, or 2 x 2 x 2
layouts, all of which represent globally optimal solutions.

e Scenario 3: Eight rectangular boxes of varying sizes. In this non-uniform configuration,
no closed-form global optimum is known. The objective is to evaluate each algorithm’s ability to
navigate a heterogeneous packing space where optimality cannot be verified analytically.
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e Scenario 4: Eight complex-shaped objects. This scenario includes industrial parts such as gears,
hooks, rivets. Due to the geometric complexity and lack of symmetry, no analytical global optimum
exists. This setup tests the heuristic and exploratory capabilities of the algorithms, representing an
industrial challenge with an unknown optimal packing configuration.

5.3 Analysis of Scenario 1: Four Identical rectangular boxes

In Scenario 1, the initial configuration of the four identical rectangular boxes is depicted in Figure [6] This
setup was designed to test each algorithm’s ability to navigate a relatively simple scenario where the
global optimum involves aligning all rectangular boxes in a compact configuration. The results of the final
configurations found by the GD and SPGD algorithms are illustrated in Figure [/} showing both Gradient
Descent and Steepest Perturbed Gradient Descent results side by side.

Figure 6: Initial configuration of four identical rectangular boxes in Scenario 1.

(a) GD (b) SPGD

Figure 7: Comparative final configurations for Scenario 1 by GD and SPGD. The GD configuration
shows typical convergence behaviors, while SPGD demonstrates a convergence to the global optimum,
representing a significantly superior solution compared to traditional GD methods.

The outcomes depicted in the figures reveal that, due to the collision constraint, GD struggled to
converge to the global solution and settled in a suboptimal local minimum. In contrast, SPGD successfully
converged to the global optimal configuration, effectively avoiding local minima and fulfilling the collision
constraints more efficiently. To further illustrate the performance dynamics over the course of the
optimization, the loss convergence history for both algorithms is plotted in Figure [8| This figure shows
loss values as a function of elapsed time and the number of iterations.
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Figure 8: Loss convergence history based on elapsed time and the number of iterations for GD and SPGD
in Scenario 1.

Although SPGD achieved the optimal configuration more rapidly in terms of the number of iterations,
it required more computational time overall compared to GD. These plots (Figures |8) help demonstrate
that while SPGD’s iterations are more effective at progressing toward the global optimum, they are
computationally more intensive, likely due to the complexity of the perturbation calculations and the more
sophisticated collision checks involved.

This scenario underscores SPGD’s strengths in effectively navigating optimization landscapes with
collision constraints and its ability to reach global optima where traditional GD may fail. However, the
increased computational demand highlights an area for further optimization and efficiency improvements
in SPGD’s implementation.

5.4 Analysis of Scenario 2: Eight Identical rectangular boxes

In Scenario 2, the initial configuration of eight identical rectangular boxes is depicted in Figure [9} This
scenario was designed to assess each algorithm’s ability to scale and manage increased numbers of objects
while maintaining an efficient packing configuration. The outcomes of the final configurations found by
the GD and SPGD algorithms are illustrated in Figures and respectively.

Figure 9: Initial configuration of eight identical rectangular boxes in Scenario 2.
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(a) GD (b) SPGD

Figure 10: Comparative final configurations for Scenario 2 by GD and SPGD. GD’s final arrangement
demonstrates collision challenges, hindering optimal packing. In contrast, SPGD achieves a more compact
configuration, effectively utilizing its adaptive perturbations to overcome collision barriers and improve
packing density.

During the optimization process, the GD algorithm encountered significant issues and ceased further
packing adjustments due to a collision between the yellow and red rectangular boxes, effectively stopping
the optimization prematurely. In contrast, the SPGD algorithm managed to navigate around this problem
and did not converge to the global optimal solution but found a notably more compact suboptimal solution,
approximately three times more space-efficient than the configuration found by GD.

To further illustrate the performance dynamics over the course of the optimization, the loss convergence
history for both algorithms is plotted in Figure showing loss values as a function of elapsed time and
the number of iterations.

Figure 11: Loss convergence history based on elapsed time and the number of iterations for GD and SPGD
in Scenario 2.

Although SPGD did not achieve the global optimum, it provided a significant improvement over GD
by finding a much more compact solution rapidly. This scenario demonstrates SPGD’s superior capability
in effectively navigating complex landscapes and managing collision constraints dynamically compared to
GD. The increased performance in finding a substantially better solution highlights the potential of SPGD
for more effective space utilization in packing problems.

5.5 Analysis of Scenario 3: Eight rectangular boxes of Different Sizes

In Scenario 3, which introduces a higher level of complexity due to the use of eight rectangular boxes of
different sizes, the initial configuration is shown in Figure This setup challenges the algorithms’ ability
to efficiently manage and optimize space in a more heterogeneous environment.
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Figure 12: Initial configuration of eight rectangular boxes of different sizes in Scenario 3.

The SPGD algorithm’s performance in this scenario was notably superior, as it converged to a more
compact solution significantly faster than the traditional GD method. The results of the final configurations
found by the GD and SPGD algorithms are shown in Figures and respectively.

(a) GD (b) SPGD

Figure 13: Comparative final configurations for Scenario 3: Gradient Descent (left) shows less optimized
packing, while Steepest Perturbed Gradient Descent (right) demonstrates a more compact and efficient
arrangement.

Despite the lack of a known global optimal solution due to the varying sizes and potential configurations,
SPGD effectively utilized its perturbation mechanism to explore and optimize the packing arrangement.
This scenario highlights the algorithm’s adaptability and efficiency in handling diverse object dimensions,
which is crucial for real-world applications.

To further evaluate the performance dynamics, the loss convergence history for both algorithms is
plotted in Figure showing loss values as a function of elapsed time, and the number of iterations.

23



Vahedi & Ilies, ASME JMD, 147(7), 2026. 5 NUMERICAL RESULTS

Figure 14: Loss convergence history based on elapsed time and the number of iterations for GD and SPGD
in Scenario 3.

These figures demonstrate that SPGD not only achieves a more desirable outcome but also does so with
greater computational efficiency in terms of iteration count, despite the complex interplay of different-sized
objects. This efficiency underscores SPGD’s potential as a robust tool for tackling sophisticated packing
challenges where traditional methods might falter.

5.6 Analysis of Scenario 4: Eight Objects of Different Shapes

Scenario 4, the most complex of the scenarios tested, involved packing eight objects of different, irregular
shapes such as gears, hooks, and rivets. The initial configuration is illustrated in Figure which presents
a diverse and challenging packing environment.

Figure 15: Initial configuration of eight objects of different shapes in Scenario 4.

In this demanding scenario, the SPGD algorithm demonstrated its robust capability by converging to
a significantly more compact solution compared to the traditional GD method. Although the time taken
by SPGD to find the optimal solution was comparable to that of GD, the overall optimization process
required more time due to the termination condition set for no improvement in the loss value over 2000
iterations. The final configurations achieved by the GD and SPGD algorithms are shown in Figure
and reflecting the SPGD algorithm’s effectiveness in handling complex and varied object forms.
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(a) GD (b) SPGD

Figure 16: Comparative final configurations for Scenario 4: Gradient Descent (a) struggles with complexity,
while Steepest Perturbed Gradient Descent (b) demonstrates a significant improvement, achieving a more
compact arrangement by 19.6%.

To highlight the dynamic performance of both algorithms in this scenario, Figure presents the loss
convergence history based on elapsed time, and the number of iterations.

Figure 17: Loss convergence history based on elapsed time for GD and SPGD in Scenario 4.

These results underscore the SPGD algorithm’s capacity to adapt to and effectively manage the
intricacies of packing highly irregular objects. Although the time to reach the optimal solution was similar
for both algorithms, SPGD’s ability to achieve a more compact arrangement highlights its suitability
for complex, real-world packing problems where shape diversity plays a critical role. The extended time
required for optimization termination points to the rigorous nature of the stopping criterion, ensuring that
the solution is indeed optimal before termination.

Results of these experiments are summarized in the table [9] which compares the performance of SPGD
and GD in terms of best loss, and volume.

Table 9: Final Loss and Volume Comparison of SPGD and GD across different packing scenarios

Scenario | Method | Best Loss | Volume
1 SPGD 74.59 7.12
GD 108.69 13.04
9 SPGD 137.38 16.51
GD 465.53 58.24
3 SPGD 145.59 17.60
GD 225.36 27.46
4 SPGD 103.26 12.34
GD 123.40 14.76
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This analysis highlights the superior adaptability and performance of SPGD, particularly in scenarios
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involving complex and non-uniform object configurations. The algorithm’s ability to effectively shuffle and
perturb component sequences contributes significantly to its success in navigating the intricate landscapes
presented by these diverse packing challenges.

6 Conclusion

The SPGD algorithm presents a novel integration of deterministic optimization with strategic stochastic
perturbations, designed to overcome the limitations of traditional gradient descent methods in non-convex
landscapes and plateaus. Through comparative analyses, SPGD has demonstrated potential advantages
in complex non-convex optimization challenges, consistently converging to the global optimum across 30
randomized trials per benchmark function. These results highlight both the robustness and practical
utility of SPGD across a wide range of optimization scenarios.

Looking ahead, SPGD shows promise for broader applications in diverse domains and enhancements in
machine learning methodologies:

« Expanding Application Domains: Future investigations could explore SPGD’s application to
fields like engineering design optimization [49], logistics, energy management, bioinformatics, and
fuzzy logic parameter tuning optimization [50], showcasing its versatility and robustness.

e« Enhancements in Machine Learning: There is potential for SPGD to significantly enhance
neural network training, especially within deep learning frameworks by improving convergence rates
and navigating complex parameter spaces.

e Integration with Machine Learning Frameworks: SPGD has already been implemented using
the PyTorch framework for the 3D component packing problem, demonstrating its adaptability to
complex optimization tasks. Future work could extend this integration to machine learning projects,
particularly in training neural networks, thereby potentially broadening its user base and enhancing
its utility in diverse applications.

e Adaptive Perturbation Strategies: Developing adaptive perturbation techniques that respond
to specific characteristics of the optimization landscape could further refine SPGD’s effectiveness,
making it more problem-specific.

« Extension to Complex Systems: Exploring the 3D Component Packing Problem within the
SPI2 framework could pave the way for handling interconnected systems with physical interactions,
where topology and collision constraints add layers of complexity.

These future directions not only aim to broaden the utility of SPGD but also open new avenues for
innovative research in the field of optimization.
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Appendix: Descent Lemma

Lemma A.1 (Descent lemma for f-smooth f). If f : R?* — R has (-Lipschitz gradient, then for all
z,y € RY,

Fy) < £00 + YAy -3 + by~ xI (10)

This inequality can be viewed as a quadratic approximation to f around x.
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Corollary A.2 (One-step decrease of GD (Lemma 9 in [3]). Let x* = x — a V f(x) with step size a > 0.
Under the assumptions of [A.]]

f) < f0) = a(1- %) VLB (11)

In particular, if « < 1/¢ then
F) < F60) = SIVIGIB. (12)

If a = ¢/l with a universal c € (0,1], then
F) < f60) = 5 VA3 (13)
Proof A.3 (Proof of[A.2). Apply with y =x —aV f(x):
L
F<") < ) = all VI3 + 5o IV = £(x) = (1= %) IVF ()3,

which gives ; follows since al < 1, and follows by substituting o = ¢/ .

B Appendix: Notation and Symbols

Notation Symbol Meaning
« d € N is the space dimension; vectors are in R%,
| - ]l2: Euclidean norm. d Dimension.
l Gradient Lipschitz constant.
» For A € R, HAHOP is the spectral norm; p Hessian Lipschitz constant.
Amin(A): smallest eigenvalue. £ Infimum of .
o B(0,r) = {u € R : |jullz < r}; Unif(B(0,r)): Ag f(xo) — f* (initial suboptimality).
uniform distribution within a ball of radius r. o Step size, = ¢//.
e Vf(x), V2f(x): gradient and Hessian of f at x. € Gradient tolerance in SOSP.
- _ ) ) V/pE Curvature tolerance in SOSP.
o O(+): big-O up to polylogarithms in natural pa- Amp Perturbation radius.
rameters (e.g., d, 1/9). T Escape horizon (and period in rollout
e An iteration is one GD step; a perturbation round analysis).
is when seeds are injected and one is selected. Iterp Period between perturbations.
Np Number of seeds per round.
Do Per-seed success probability (PGD),

> 1/poly(d).

Overall failure budget.
round Per-round failure budget (= 0/R).
T Total GD iterations.
R Number of rounds (< T'/Iterp).

30



	Introduction
	Related Work
	Methodology: SPGD
	Overview of the Analysis
	Preliminaries
	Baseline: Convergence without Rollouts (Current SPGD Implementation)
	Possible Extension: Convergence with Best-of-NP Rollouts
	Time and Compute Complexity for the Best-of-NP Rollouts Case

	Comparison with PGD

	Numerical Results
	Initial Configuration and Setup
	Experimental Scenarios and Results
	Analysis of Scenario 1: Four Identical rectangular boxes
	Analysis of Scenario 2: Eight Identical rectangular boxes
	Analysis of Scenario 3: Eight rectangular boxes of Different Sizes
	Analysis of Scenario 4: Eight Objects of Different Shapes

	Conclusion
	Appendix: Descent Lemma
	Appendix: Notation and Symbols

