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Abstract  

Protein contact maps represent spatial pairwise inter-residue interactions, providing a protein's 
translationally and rotationally invariant topological representation. Accurate contact map prediction has 
been a critical driving force for improving protein structure prediction, one of computational biology's most 
challenging problems in the last half-century. While many computational tools have been developed to this 
end, most fail to predict accurate contact maps for proteins with insufficient homologous protein sequences, 
and exhibit low accuracy for long-range contacts. To address these limitations, we develop a novel hybrid 
model, CGAN-Cmap, that uses a generative adversarial neural network embedded with a series of modified 
squeeze and excitation residual networks. To exploit features of different dimensions, we build the 
generator of CGAN-Cmap via two parallel modules: sequential and pairwise modules to capture and 
interpret distance profiles from 1D sequential and 2D pairwise feature maps, respectively, and combine 
them during the training process to generate the contact map. This novel architecture helps to improve the 
contact map prediction by surpassing redundant features and encouraging more meaningful ones from 1D 
and 2D inputs simultaneously. We also introduce a new custom dynamic binary cross-entropy (BCE) as the 
loss function to extract essential details from feature maps, and thereby address the input imbalance problem 
for highly sparse long-range contacts in proteins with insufficient numbers of homologous sequences. We 
evaluate the performance of CGAN-Cmap on the 11th, 12th, 13th, and 14th Critical Assessment of protein 
Structure Prediction (CASP 11, 12, 13, and 14) and CAMEO test sets. CGAN-Cmap significantly 
outperforms state-of-the-art models, and in particular, it improves the precision of medium and long-range 
contact by at least 3.5%. Furthermore, our model has a low dependency on the number of homologous 
sequences obtained via multiple sequence alignment, suggesting that it can predict protein contact maps 
with good accuracy for those proteins that lack homologous templates. These results demonstrate an 
efficient approach for fast and highly accurate contact map prediction toward construction of protein 3D 
structure from protein sequence.  

 

Data availability: All datasets and source codes are provided in: https://github.com/mahan-fcb/CGAN-
Cmap-A-protein-contact-map-predictor 
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Introduction 

Protein structure determination from sequence has long been one of the most challenging problems in 
structural biology1,2,3. Experimental approaches to determine the 3D structure of a protein are often time-
consuming and costly4,5. Only about 200,000 protein structures have been identified through experimental 
methods such as X-ray crystallography compared to millions of existing protein sequences6. To bridge the 
sequence-structure gap, ab initio computational methods play pivotal complementary roles in resolving 
protein structure and function2,7. Progress in community-wide Critical Assessment of Structure Prediction 
(CASP) experiments has demonstrated that contact map prediction, used as an intermediary constraint, 
boosts the accuracy of ab initio folding simulations and improves the success rate for prediction of protein 
targets8. Knowledge about contacts between pairs of residues provides a translationally and rotationally 
invariant topological representation of a protein that can capture the global topology of the protein fold8,9.   

A number of computational tools to predict protein contact maps have been developed, most falling under 
two common classes of methods: Evolutionary Coupling Analysis (ECA) and machine learning (ML)10 
methods. ECA predicts contact maps by analyzing evolutionary correlations of proteins derived from 
multiple sequence alignments (MSAs). Direct evolutionary analysis (DCA) is most accurate among ECA 
methods, using MSAs to identify direct evolutionary residue-residue relationships and correlations. DCA 
considers the effect of residues in different positions on each pair of residues to quantify the correlations 
between them11,12. Popular DCA methods include CCMPred13, FreeContact14, GREMLIN15, and PSICOV16. 
To find these relationships, DCA commonly utilizes graphical lasso11 and pseudo-likelihood 
maximization12. Graphical lasso finds the graph structure from a covariance matrix, and pseudo-likelihood 
maximization is a probabilistic model to find the strength of interactions between residues11,12. Notably, 
DCA methods generally exhibit two major limitations. First, DCA-based methods have poor performance 
when the number of homologous sequences is lower than approximately 5017,18. Second, these methods 
extract only linear relationships between pairs of residues17. Conversely, the relationships between pairs of 
residues are intrinsically non-linear17.  

By contrast, machine learning, and more specifically deep learning approaches, have been successfully 
utilized to find more accurate contact maps for proteins with few homologous sequences19. Most of the 
recently proposed models tested in CASP are based on deep learning, in particular residual neural networks 
(ResNets)17,18,20, which resolve the classical machine learning vanishing gradient problem, and more 
importantly, show sufficient depth to accurately predict protein contact maps21. ResNets effectively 
encourage most important features and bypass low quality information within feature maps. Notably, two 
of the most commonly used and accurate contact map predictors (as confirmed by CASP 12 and 13), 
RaptorX-contact20 and TripletRes17, are ResNet-based. Besides residual networks, other deep learning 
models show comparable performance in predicting accurate contact maps, especially for long-range 
contacts22,23. Generative Adversarial Networks (GANs) are one of a powerful class of neural networks used 
for unsupervised learning, capable of learning low and high-level patterns24. GANs comprise two 
competitive networks, namely a generator network and a discriminator. During training, the generator 
learns to maximize the accuracy of generated samples to fool the discriminator. On the other hand, the 
discriminator tries to distinguish between the generated samples and real data25. Conditional GANs have 
been widely adopted for high-level resolution generation tasks including image-to-image translation26.  
Thus, this functionality enables GANs to be used in making predictions of optimal and more accurate 
contact maps24,27,28.  

Despite recent progress in contact map prediction, a challenging outstanding problem remains: the 
prediction of medium and long-range contacts (i.e., where the distance between position indices of pairs of 
amino acid residues is more than 12 Å). These types of contacts are highly sparse, complicating accurate 
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prediction17. Sparsity creates an imbalance problem, when the ratio of contacting and uncontacting residues 
is low (less than 3%). To tackle this, we build a new tool to accurately predict contact maps for medium 
and long-range contacts regardless of the number of homologous sequences available. Inspired by the 
capabilities of GANs for generating high-resolution images from input features, in this study we propose a 
contact map predictor, CGAN-Cmap, constructed via integration of a modified squeeze excitation residual 
neural network (SE-ResNet), SE-Concat, and a conditional GAN. In the architecture of the GAN generator, 
we define two novel subnets to extract feature representations during training and feed them to subsequent 
layers gradually. We also introduce a custom loss function for training the model, a dynamic weighted 
binary cross-entropy (BCE) loss function, which assigns a dynamic weight for classes based on the ratio of 
the uncontacted class to the contacted class in each iteration of the training process. This loss function 
emphasizes misclassified residue pairs to enhance the model training and tackle the imbalance problem. By 
taking advantage of the model architecture and custom loss function, the receptive field and feature 
reusability are significantly enhanced, which allows us to capture more complex non-linear relationships 
between amino acid residues even for proteins with few homologous sequences. We assess the performance 
of CGAN-Cmap on existing recent CASP datasets (CASP 11, CASP 12, CASP 13, CASP 14). The results 
reveal that CGAN-Cmap utilizing the dynamic BCE as a custom loss function consistently outperforms 
leading existing models17,20 on medium and long-range contacts for all recent CASP datasets. We also show 
that CGAN-Cmap has a moderate dependency on the number of homologous sequences available in MSAs, 
ensuring that it can accurately predict contact maps for proteins with insufficient homologous sequences. 
Overall, we show that CGAN-Cmap derives its superior performance from a custom loss function to 
overcome the sparsity problem, and a novel architecture, which increases the receptive field and feature 
reusability as well as encourages more important features within the feature map.  

 

Materials and Methods  

Contact map definition 

The protein contact map is symmetric and represents the probability of contact between two residues. If the 
Euclidean distance is less than 8 Å between two beta carbon (Cβ) atoms within two residues (for glycine 
alpha carbons (Cα) are used), these residues are considered to be contacting residues in the protein contact 
map. Generally, contacts are divided into three categories based on the difference, 𝐷𝑖𝑓𝑓, in the position 
index of two residues, A and B, in the protein sequence, as follows:  

𝐷𝑖𝑓𝑓 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑥(𝑅𝑒𝑠𝑖𝑑𝑢𝑒	𝐴) − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑥(𝑅𝑒𝑠𝑖𝑑𝑢𝑒	𝐵)		𝐸𝑞	(1) 

⎩
⎪
⎨

⎪
⎧

		
𝑖𝑓	6 < 𝐷𝑖𝑓𝑓 < 12:	𝑠ℎ𝑜𝑟𝑡 − 𝑟𝑎𝑛𝑔𝑒	𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑖𝑓	12 < 𝐷𝑖𝑓𝑓 < 24:	𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑟𝑎𝑛𝑔𝑒	𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑓	𝐷𝑖𝑓𝑓 > 24:		𝑙𝑜𝑛𝑔 − 𝑟𝑎𝑛𝑔𝑒	𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑖𝑓	𝐷𝑖𝑓𝑓 > 50:	𝑒𝑥𝑡𝑟𝑎	𝑙𝑜𝑛𝑔 − 𝑟𝑎𝑛𝑔𝑒	𝑐𝑜𝑛𝑡𝑎𝑐𝑡

	 

Note that because of the importance of long-range contacts, we introduce a new category termed long-range 
contacts.  

Datasets  

The training dataset for CGAN-Cmap is collected from SCOPe-2.0729 and a subset of the Protein Data 
Bank filtered at 25% sequence identity (PDB25)30. The protein sequence selection is conducted per the 
following criteria: 1) sequence length is between 25-700 residues; 2) the maximum sequence identity is set 
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to 30% to remove redundant sequences via CD-HIT31; 3) the native contact map resolution is more than 2.5 
Å; 4) the protein contains a single chain. Based on these criteria, 7,128 protein sequences are selected as 
the training dataset. To evaluate the performance of our model, we use five different blind public test sets 
including CAMEO (76 proteins)32, CASP 11 (110 protein targets)33, CASP 12 (54 protein targets)33, CASP 
13 (41 protein targets)33, and CASP 14 (40 protein targets)33. In a second redundancy removal process, we 
eliminate sequences in our initial training set which have sequence identity with our independent test sets 
of more than 25% via CD-HIT31. Supplementary Table S1 summarizes our final training set and 
independent test sets. The final training set is divided into five subsets. We randomly select one subset as 
the validation set and leave the remaining subsets as the training set for hyper-parameter tuning. After 
hyper-parameter tuning, the final model is the average of five models, where each of the five models is 
trained as described. 

Feature extraction 

To build a machine learning model, we extract both pairwise (co-evolution) and sequential features in a 
process similar to that introduced in RaptorX-Contact20. Pairwise features are captured from multiple 
sequence alignments (MSAs). To generate the MSA for training and test sets, we use the modified version 
of DeepMSA first proposed by Zhang et al34. Additional details on MSA generation are described in the 
Supplementary Information (SI). After MSA generation, pairwise features including the evolutionary 
coupling matrix generated by CCMpred13, the mutual information matrix35, the average product correction 
(APC)-corrected mutual information matrix36, and the pairwise contact potentials matrix37 are extracted 
from MSAs. For sequential features, we use 3- and 8-state protein secondary structure (SS3, SS8), 3-state 
solvent accessibility (ACC), and features derived from MSAs in a 20-dimensional position-specific scoring 
matrix (PSSM) and 20-dimensional position-specific frequency matrix (PSFM)38. Because PSFM contains 
the frequency of amino acids in the protein sequence, we include it in the input features to complement the 
position-specific scoring matrix. In total, sequential features are represented in a two-dimensional matrix 
with a size of 𝐿	 × 54, and pairwise features are represented in a three-dimensional matrix with a size of 
𝐿 × 𝐿 × 5, where 𝐿 is the sequence length. 

CGAN-Cmap architecture 

We employ a conditional generative adversarial neural network (CGAN) which consists of a generator to 
produce the contact map and a discriminator to compare the generated contact map with the real contact 
map (Figure 1). The overall structure of our GAN is inspired by the GANTL model39. The generator 
contains three novel subnets. The first subnet, the conversion subnet, includes a conversion block that 
converts 1D features to 2D matrices. Unlike the outer concatenation approach used in most existing 
models18,20 to convert 1D features to 2D matrices, our conversion method eliminates the repetition of 
information, and more importantly, it is learned during the training process, rather than preprocessed. To 
do so, the model learns the best-converted matrix for each 1D feature (SI Figure S2). The second subnet is 
the synthesis subnet and includes synthesis (SI Figure S3A) and upsampling (SI Figure S3C) blocks, as 
explained in the SI. This subnet is responsible for generating the contact map of proteins from the converted 
2D matrix from the first subnet and a noise vector. The third subnet is the feature extraction subnet, which 
receives the 2D features (pairwise features) as input and extracts useful feature maps from 2D information. 
This subnet includes a series of SE-Concat blocks (SI Figure S3B), that pass the extracted feature map to 
the synthesis subnet gradually to generate the protein contact map40,41. SE-Concat is inspired from the SE-
ResNet architecture, modified to use concatenation instead of summation, to reuse the extracted features 
and increase the information flow between layers40,42,43. The squeeze excitation (SE) block (SI Figure S3D) 
within the SE-Concat block emphasizes the important information and improves channel 
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interdependencies41. Unlike other models which treat the feature maps equally, the SE block weighs 
information based on its effect on the final prediction, to boost model performance.  

The discriminator consists of four convolutional layers and a dense layer that determine the probability of 
the image being real. The input to the discriminator is the original 2D features, converted 2D features 
derived from 1D features, and their corresponding contact map. It is worth noting that the discriminator 
uses the output of the dot layer in the conversion block as the converted 2D features, and ignores the 
remaining three convolutional layers in the conversion block. This ensures that all matrices have the same 
dimension, and the output of the dot layer has the same size as the contact map, so we can concatenate the 
converted 2D features and the original 2D features with the contact map.  

 

Figure 1. CGAN-Cmap model including generator and discriminator architecture.  

 

Training process 

We aim to train an end-to-end model in a single training process. To do this, we use mini-batches, because 
the training samples have different size. We choose a batch of training samples and then consider the largest 
sample size in the batch; then, we pad the samples using the zero-padding method. The padding size is 
determined based on the number of down samplings in the feature extraction subnet. Our GAN is trained 
in three steps. In the first step, we train the discriminator on the real data. Then, we repeat the same process 
for the fake samples generated by the generator. In the final step, we freeze the discriminator and train the 
generator on the training data set. The hyper-parameters used in the training process are selected based on 
the grid search. We use the ADAM optimizer and the binary cross-entropy (BCE) loss function for the 
discriminator.  

Selecting a suitable loss function for the generator is essential, since training a deep learning model for 
contact prediction is the process to determine the parameters of the network by minimizing the loss between 
the predicted protein contact maps and the real protein contact maps in the training set. Protein contact map 
prediction is highly imbalanced, as the ratio of the number of ones (contacting residues) to the number of 
zeros (uncontacting residues) is less than 0.3. To identify the appropriate loss function to overcome this 
imbalance problem, we train the generator using two different loss functions and compare their 
performance. The first loss function is a standard BCE (𝐿!"#) and the second one is a dynamic weighted 
BCE (L$%&'). The loss functions are defined as follows: 

𝐿!"# = −
1
𝑁
OP𝑦() × 𝑙𝑜𝑔R𝑦(

*S + (1 − 𝑦()) × 𝑙𝑜𝑔R1 − 𝑦(
*SU

+

(,-

	𝐸𝑞	(2) 
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𝐿.!"# = −
1
𝑁
O[𝑤/(

+

(,-

× 𝑦() × 𝑙𝑜𝑔R𝑦(
*S + 𝑤/* × (1 − 𝑦()) × 𝑙𝑜𝑔	(1 − 𝑦(

*)]		𝐸𝑞	(3) 

where N is the number of samples, ynt is the nth ground truth sample, ynp is the nth predicted sample, wfn is 
the marginal cost of a false negative over true positive, and wfp is the marginal cost of a false positive over 
true negative44. The weights control the contribution of each part of the loss function in the training process. 
For the dynamic weighted binary cross-entropy loss function, we allow the model to choose the weights of 
each sample dynamically based on the false negative and false positive values in that sample. Finally, we 
use five-fold cross-validation for training and the overall performance is calculated by averaging from all 
folds. Hyperparameters are reported in SI Table S2.  

Model evaluation 

We compare the performance of our model to four state-of-the-art contact map predictors, including 
TripletRes17, RaptorX-contact20, DeepCon45, and DeepCov46. We use mean precision of top L/k contacts (k 
= 10, 5, 2, and 1; L is the sequence length) for short, medium, long, and extra long-range contacts to evaluate 
the prediction performance of the protein contact map tools.  

 

Results & Discussion 

Model performance on CASP 11, 12, and CAMEO targets 

Table 1 summarizes the performance of our proposed tool on CASP 11, CASP 12, and CAMEO test sets, 
with standard BCE and dynamic weighted BCE, compared with five existing models. The results show that 
our models with both standard BCE  and dynamic weighted BCE outperform state-of-the art predictors 
when performance is evaluated based on mean precision. For instance, on CASP 12, mean precision of  
CGAN-Cmap for long-range top L/10, L/5, and L/2 contacts is higher by at least 4%, 5%, and 4%, 
respectively, compared to close competitors. These results confirm that the combination of the GAN model 
with our modified version of residual network blocks (SE-Concat blocks) and dynamic BCE loss function 
can be employed to improve model performance for protein contact map prediction. For the CAMEO 
dataset, CGAN-Cmap shows performance slightly inferior (by less than 1%) than TripletRes for some 
contact ranges. We expect this result to reflect the nature of proteins within the CAMEO dataset: membrane 
proteins found in the CAMEO dataset are more difficult prediction targets compared to globular proteins. 

Table 1. Model performance of CGAN-Cmap, TripletRes17, RaptorX-contact20, DeepCon45, and DeepCov46 
based on the mean precision of short, medium, and long-range top L/10, L/5, L/2, and L contacts in 
predicted contact maps for CASP 1133, CASP 1233, and CAMEO32 test sets. The highest accuracy in each 
category is highlighted in bold font. 

Test set Model 
Short-range Medium-range Long-range 

L L/2 L/5 L/10 L L/2 L/5 L/10 L L/2 L/5 L/10 

CASP 11 

DeepCon 0.21 0.40 0.70 0.77 0.33 0.50 0.71 0.81 0.47 0.64 0.72 0.72 

DeepCov 0.21 0.39 0.69 0.80 0.32 0.50 0.71 0.79 0.49 0.62 0.72 0.77 

RaptorX-
contact 0.27 0.46 0.74 0.83 0.35 0.56 0.77 0.86 0.56 0.69 0.77 0.82 
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TripletRes 0.26 0.44 0.72 0.83 0.35 0.57 0.75 0.85 0.57 0.68 0.75 0.83 

CGAN-Cmap 
(standard) 0.25 0.42 0.72 0.81 0.36 0.52 0.75 0.83 0.55 0.69 0.74 0.82 

CGAN-Cmap 
(dynamic) 0.27 0.49 0.74 0.87 0.38 0.57 0.79 0.88 0.60 0.72 0.83 0.85 

 

CASP 12 

DeepCon 0.25 0.58 0.69 0.74 0.27 0.59 0.62 0.72 0.35 0.55 0.60 0.64 

DeepCov 0.23 0.62 0.70 0.76 0.33 0.64 0.66 0.77 0.33 0.59 0.63 0.68 

RaptorX-
contact 0.44 0.69 0.75 0.82 0.48 0.69 0.72 0.82 0.47 0.69 0.77 0.79 

TripletRes 0.47 0.70 0.77 0.80 0.46 0.72 0.76 0.83 0.45 0.67 0.71 0.77 

CGAN-Cmap 
(standard) 0.53 0.68 0.80 0.86 0.49 0.77 0.79 0.86 0.55 0.70 0.80 0.82 

CGAN-Cmap 
(dynamic) 0.58 0.72 0.81 0.87 0.50 0.67 0.80 0.86 0.59 0.73 0.81 0.83 

 

CAMEO 

DeepCon 0.18 0.33 0.48 0.55 0.22 0.34 0.56 0.58 0.34 0.46 0.53 0.57 

DeepCov 0.19 0.31 0.49 0.57 0.19 0.34 0.53 0.59 0.32 0.48 0.51 0.58 

RaptorX-
contact 

0.24 0.39 0.58 0.67 0.29 0.43 0.63 0.70 0.42 0.55 0.65 0.69 

TripletRes 0.26 0.42 0.60 0.70 0.34 0.46 0.67 0.75 0.46 0.59 0.69 0.76 

CGAN-Cmap 
(standard) 

0.21 0.37 0.58 0.66 0.29 0.42 0.62 0.66 0.43 0.54 0.66 0.72 

CGAN-Cmap 
(dynamic) 

0.27 0.41 0.61 0.72 0.33 0.45 0.69 0.74 0.47 0.57 0.70 0.75 

 

Model performance on CASP 13 and CASP 14 targets 

We also evaluate the performance of our model on recent CASP targets, CASP 13 and CASP 14, and 
compare to existing models (Table 2). As a note, we extract input features for all models from the same 
MSA for a fair comparison. In CASP 13, a new range of contact, termed extra long-range, was introduced. 
So, to be consistent with the recent evaluation protocol in CASP, we evaluate the performance of all models 
by calculating the mean precision of top L, L/2, L/5, and L/10 contacts in the (medium + long)-range, long-
range, and extra long-range. We find that both versions of the CGAN-Cmap model consistently outperform 
all existing models for all top L/k contacts for k=1, 2, 5, 10, in the (medium + long)-range, long-range, and 
extra long-range. For example, the mean precision of CGAN-Cmap for top L contacts is 1.4% and 0.9% 
higher than TripletRes and RaptorX-contact, respectively. For long and (medium + long)-range contacts, 
the gap between the mean precision of CGAN-Cmap and both RaptorX-contact and TripletRes is also 
substantial (between 2% - 5.5%). For extra-long range contacts prediction, CGAN-Cmap model achieves 
mean precision at least 3% higher than close competitors. However, in CASP 13, for top L/10 and L/5 extra 
long-range contacts, the performance of CGAN-Cmap is slightly inferior to TripletRes and RaptorX-contact 
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(by 1.2% for L/5 and 1.9% for L/10). As a case study, we also compare the prediction performance of 
CGAN-Cmap on all individual targets within CASP 12, CASP 13, and CASP 14 with TripletRes17 and 
RaptorX-contact20(Figure 2). CGAN-Cmap has higher precision values across most of the targets, for top 
L/2 and L/5 (medium + long)-range, long-range, and extra long-range contacts in comparison to state-of-
the-art models, despite CGAN-Cmap’s reduced training set size, number of layers in the architecture, and 
trainable parameters.  

Table 2. Model performance of CGAN-Cmap, TripletRes17, RaptorX-contact20, DeepCon45, and DeepCov46 
based on the mean precision of short, medium, and long-range top L/10, L/5, L/2, and L contacts in 
predicted contact maps for  CASP 13 and CASP 14 test sets. The highest accuracy in each category is 
highlighted in bold font. 

Test 
sets Model 

(Medium + Long)-range Long-range Extra long-range 

L L/2 L/5 L/10 L L/2 L/5 L/10 L L/2 L/5 L/10 

CASP 
13 

DeepCon 0.56 0.70 0.81 0.86 0.42 0.54 0.64 0.71 0.33 0.47 0.62 0.65 

DeepCov 0.46 0.58 0.69 0.74 0.33 0.43 0.53 0.60 0.28 0.40 0.53 0.61 

RaptorX-contact 0.62 0.72 0.81 0.85 0.55 0.65 0.77 0.81 0.38 0.55 0.69 0.73 

TripletRes 0.62 0.72 0.81 0.86 0.54 0.67 0.76 0.80 0.39 0.54 0.70 0.72 

CGAN-Cmap 
(standard) 0.60 0.69 0.80 0.84 0.52 0.64 0.76 0.83 0.36 0.51 0.66 0.70 

CGAN-Cmap 
(dynamic) 0.63 0.73 0.81 0.88 0.62 0.71 0.81 0.84 0.40 0.56 0.68 0.72 

 

CASP 
14 

DeepCon 0.28 0.37 0.45 0.56 0.16 0.26 0.32 0.38 0.17 0.22 0.25 0.28 

DeepCov 0.21 0.27 0.32 0.47 0.13 0.20 0.29 0.34 0.11 0.13 0.16 0.21 

RaptorX-contact 0.32 0.42 0.57 0.64 0.24 0.32 0.40 0.45 0.23 0.28 0.31 0.36 

TripletRes 0.33 0.42 0.56 0.63 0.25 0.31 0.41 0.44 0.22 0.26 0.29 0.36 

CGAN-Cmap 
(standard) 0.32 0.41 0.55 0.62 0.23 0.32 0.40 0.45 0.22 0.27 0.28 0.36 

CGAN-Cmap 
(dynamic) 0.35 0.46 0.62 0.69 0.32 0.38 0.44 0.48 0.24 0.29 0.33 0.39 
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Figure 2. Performance comparison between CGAN-Cmap, TripletRes17 and RaptorX-contact20 for all 
individual targets in the CASP 12, CASP 13, and CASP 14 datasets, based on precision of  A) top L/2 
medium + long-range predicted contacts, B) top L/2 long-range predicted contacts, C) top L/2 extra long-
range predicted contacts, D) top L/5 medium + long-range predicted contacts, E) top L/5 long-range 
predicted contacts, F) top L/5 extra long-range predicted contacts.  

 

To demonstrate the applicability of our model, we present an example from the first domain of T1049 in 
CASP14 (PDB ID:6y4f) with 130 residues (Figure 3), a  Zn-dependent receptor-binding domain of Proteus 
mirabilis MR/P fimbrial adhesin MrpH47. CGAN-Cmap has a mean precision of 88.2% for the top L/2 long-
range contacts, compared to 57.8% by RaptorX-contact and 72.4% by TripletRes, respectively. As shown 
in Figure 3A and 3B, RaptorX-Contact and TripletRes do not predict any long-range contacts in Region 1, 
a critical loop-loop contact region. RaptorX-contact fails to predict contacts in Region 2 (Figure 3A). By 
contrast, CGAN-Cmap predicts both Regions 1 and 2, with high accuracy (Figure 3C).  
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Figure 3. An illustrative example of a CASP14  target T1049 showing a comparison of top-L/2 long-range 
contact prediction by A) CGAN-Cmap (lower left triangle) and RaptorX-contact20 (upper right triangle) 
and B) CGAN-Cmap (lower left triangle) and TripletRes17 (upper right triangle). In each map, the true 
contacts are marked in white, true positives in red, and false positives in blue. C) Experimental structure of 
target T1049, with the long-range true positive prediction by CGAN-Cmap in Region 1, Region 2 and other 
regions marked with yellow, green, and red lines, respectively. 

 

The performance of CGAN-Cmap is superior to existing state-of-the-art tools on CASP datasets, exceeding 
the best current methods by a large margin. This improved performance of CGAN-Cmap compared to other 
existing models originates from its dynamic weighted BCE loss function and its novel architecture. To 
summarize the effect of the architecture on the performance of the model, we highlight various blocks 
within the generator that are deterministic components of CGAN-Cmap driving accurate prediction of the 
contact map. First, our model uses a conversion block to convert protein 1D information to useful 2D feature 
maps for contact map generation. This block avoids repetition of information, and allows the model to learn 
the best converted 2D features from the input 1D information. Second, the synthesis blocks can effectively 
determine the essential parts of the protein 2D information that are useful for generating the contact map48. 
Finally, SE-Concat captures more information from the input feature maps because it not only reduces 
gradient vanishing owing to feature reusability but also highlights the most important information from 
feature maps, which results in the capture of complex sequence-contact relationships while using many 
fewer parameters than other methods41. All these blocks work together to generate state-of-the-art 
performance for contact map prediction. In addition to the unique combination of architecture blocks used 
in our model, our custom loss function overcomes the imbalance problem by effectively assigning the 
appropriate weights in the training process to predict highly sparse contacts.  In the following sections, we 
discuss the effect of SE-Concat blocks and input features on the performance of CGAN-Cmap in detail, 
and we characterize the dependency of our model’s performance on the MSA generation protocol and 
number of homologous sequences within MSAs.  

SE-Concat block improves CGAN-Cmap performance to predict sparse contacts 

One of the key novelties of our model is use of the SE-Concat block instead of the standard ResNet or SE-
ResNet layer. To show the effect of SE-Concat on the performance of CGAN-Cmap, we calculate the 
performance of the model with SE-Concat and SE-ResNet, respectively, on CASP 13 and CASP 14 and 
summarize the performance in Table 3. Our CGAN-Cmap with SE-Concat blocks has at least 4%, and 6% 
mean precision improvement, for CASP 13 and CASP 14, respectively, on various top L/k long-range 
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contacts compared to CGAN-Cmap with SE-ResNet blocks. We also calculate the average precision on the 
training set over the training epoch (Figure 4).  These results confirm that CGAN-Cmap with SE-Concat 
displays a consistently better performance than CGAN-Cmap with SE-ResNet in most epochs of the 
training process.  SE-Concat blocks help to extract more meaningful patterns from the input features, since 
the concatenation layer reuses the extracted features and helps to increase the information flow between 
layers40,41. The enhancement in information flow alleviates the vanishing-gradient problem and strengthens 
feature propagation to more accurately predict sparse contacts within the contact maps. 

Table 3. Model performance of the original CGAN-Cmap and CGAN-Cmap with SE-ResNet blocks instead 
of SE-Concat based on the mean precision of the predicted contact map on CASP 13 and CASP 14 test sets.  

Test 
set 

 

Model 

(Medium + Long)-range Long-range Extra long-range 

L L/2 L/5 L/10 L L/2 L/5 L/10 L L/2 L/5 L/10 

CASP 
13 

SE_ResNet-
CGAN-Cmap 0.58 0.66 0.76 0.84 0.55 0.64 0.76 0.81 0.34 0.49 0.61 0.68 

CGAN-Cmap 
(dynamic) 0.63 0.72 0.81 0.88 0.62 0.71 0.81 0.84 0.40 0.56 0.68 0.72 

 

CASP 
14 

SE_ResNet-
CGAN-Cmap 0.31 0.39 0.54 0.61 0.23 0.32 0.40 0.39 0.20 0.24 0.25 0.33 

CGAN-Cmap 
(dynamic) 0.35 0.46 0.62 0.69 0.32 0.38 0.44 0.48 0.24 0.29 0.33 0.39 

 

 

Figure 4. Comparison of the performance of the original CGAN-Cmap and CGAN-Cmap with SE-ResNet 
blocks by evaluation of the mean precision of the validation set over training epochs A) for top L/2 long-
range contacts, and B) top L/5 long-range contacts. 
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Co-evolutionary pairwise features are key determinants in contact map prediction 

Input features are one of the key determinants of model performance. To clarify the impact of individual 
groups of input features on the performance of the CGAN-Cmap model, we examine the efficiency and 
importance of the ensembled feature collection on the contact predictions. To do so, we categorize all input 
features into four groups: 1) sequential features (L x 54), 2) only pairwise features (L x L x 5), 3) pairwise 
features (L x L x 5) + SS3 & SS8 (L x 11) + ACC (L x 3), and 4) pairwise features (L x L x 5) + PSSM (L 
x 20) + PSFM (L x 20). In all groups, except the first, we consider pairwise features since we expect these 
to be essential input features for protein contact map prediction. Figure 5 presents the average top L/5 long-
range contacts precision values over the training epochs. All models become stable after 300 epochs of 
training and reach a precision value of 65.4%, 71.9%, 80.4%, 82.3%, and 86.1%, for groups 1, 2, 3, 4, and 
an ensemble of all input features, respectively. CGAN-Cmap trained with an ensemble of all input features 
achieves consistently better performance than CGAN-Cmap trained with one of groups 1 to 4 only. In 
contrast to the model which uses sequential features (group 1), CGAN-Cmap with pairwise features (group 
2) achieves higher mean precision for protein contact prediction, confirming that pairwise features are key 
elements for input. We note that when using group 4, our model achieves a mean precision close to the 
original model with an ensemble of all input features (lower by only 4%), suggesting that features derived 
directly from MSA such as PSSM and PSFM are critically important co-evolution features for improving 
performance of CGAN-Cmap. This analysis highlights the importance of pairwise features and specifically 
MSA-derived features (PSSM, PSFM) for contact map prediction, because these co-evolutionary features 
distinguish correlations resulting from direct or indirect effects of residue interactions, and thereby improve 
prediction accuracy of contacts.  Result with group 3 suggest that other sequential features such as ACC 
and SS3 & SS8 can be used for further improvement of the model. 

 

Figure 5. Mean precision of top L/5 long-range contacts over training epoch for the validation set showing 
the impact of various input features (ensemble of all input features, sequential features, pairwise, pairwise 
+ PSSM + PSFM, and pairwise + SS3 + SS8 + ACC) on CGAN-Cmap performance. 
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Effect of MSA protocol on CGAN-Cmap performance 

The quality of the generated MSA has an essential impact on predicted contact maps because of its role in 
input feature generation. To show the type of dependency of CGAN-Cmap performance on the MSA 
extraction protocol and, more importantly, on the number of homologous sequences within the MSA, we 
train our model on input features extracted from MSA generated via only the HHblits approach49 without 
any constraint on Neff value and compare its performance with original CGAN-Cmap trained with 
DeepMSA (Table 4). The model's performance with DeepMSA is only slightly better than with HHblits on 
different ranges of contacts (by at most 2.5%), suggesting that our model has a modest dependency on the 
MSA building protocol and even with HHblits  or other MSA generation approach, the model still maintains 
its performance. To further validate this modest dependency, we compare the precision of top L/2 and top 
L/5 long-range contacts in predicted models with and without deep MSAs for all targets in CASP 12, 13, 
and 14 test sets (Figure 6).The performance of CGAN-Cmap with both MSA building approaches is similar 
for most targets within the CASP test sets. In another analysis, we characterize the dependency of our model 
on the Neff value. To that end, first we divide targets into low Neff targets (Neff < 10) and  high Neff 
targets (Neff > 10) and then define a precision threshold of 50%. Then, we calculate the precision of Top 
L/5 long-range contacts for all individual targets within the CASP 12, 13, and 14 by CGAN-Cmap, 
TripletRes17, and Raptorx-Contact20(Figure 7). Our model predicts most of the high Neff targets with a 
precision greater than 50% (Figure 7A), confirming that higher Neff targets are predicted accurately with 
higher likelihood based on the higher quality information in their MSA. Interestingly, for low Neff targets, 
our model predicts about 67% (28/44) of them with the precision of more than 50%, suggesting that CGAN-
Cmap can predict protein contact maps with high accuracy for proteins with a low Neff value. For 
comparison, we perform the same analysis for RaptorX-contact and TripletRes models (Figures 7B and 
7C). TripletRes has good performance on high Neff targets, but it cannot predict low Neff targets with high 
accuracy, in contrast to our model that demonstrates its low dependency on number of homologous 
sequence within the MSAs for contact map prediction.  

Table 4. Model performance of the original CGAN-Cmap with DeepMSA and CGAN-Cmap with HHblits 
based on the mean precision of predicted contact map on CASP 13 and CASP 14 test sets. The highest 
accuracy in each category is highlighted in bold font. 

Test 
set 

 

Model 

(Medium + Long)-range Long-range Extra long-range 

L L/2 L/5 L/10 L L/2 L/5 L/10 L L/2 L/5 L/10 

CASP 
13 

HHblits-CGAN-
Cmap 0.62 0.70 0.80 0.86 0.60 0.68 0.79 0.83 0.42 0.53 0.66 0.69 

CGAN-Cmap 
(dynamic) 0.63 0.72 0.81 0.88 0.62 0.71 0.81 0.84 0.40 0.56 0.68 0.72 

 

CASP 
14 

HHblits-CGAN-
Cmap 0.33 0.44 0.59 0.66 0.30 0.37 0.42 0.47 0.23 0.26 0.32 0.37 

CGAN-Cmap 
(dynamic) 0.35 0.46 0.62 0.69 0.32 0.38 0.44 0.48 0.24 0.29 0.33 0.39 
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Figure 6. Precision of A) top L/2 long-range contacts and B) top L/5 long-range contacts predicted by 
CGAN-Cmap with deep MSAs versus that without deep MSAs for all targets in CASP 12, 13, and 14 test 
sets. 

 

 

Figure 7. The precision of top L/5 long-range predicted contacts versus Neff of MSAs for A) CGAN-Cmap, 
B) RaptorX-contact20, and C) TripletRes17. Horizonal dotted line is precision threshold (50%) and vertical 
dotted line represents Neff threshold (10). 

 

Conclusions  

Accurate prediction of protein contact maps has been widely used in de novo protein structure prediction. 
In this study, we propose a novel GAN-based architecture, CGAN-Cmap, for contact map prediction. 
During the adversarial learning process, the generator network of CGAN-Cmap captures the underlying 
contact information from versatile protein features by employing a dedicated generator including various 
blocks such SE-Concat and synthesis blocks, while the discriminator network learns the difference between 
generated contact maps and real ones and automatically transfers them back to the generator network.  By 
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taking advantage of the novel architecture and training approach, our model outperforms all existing protein 
contact map predictors when the evaluation is assessed on different CASP targets. Furthermore, our 
proposed model exhibits a modest dependency on the number of homologous sequences in the MSA, 
resulting in accurate predictions for proteins with low Neff value. Although CGAN-Cmap shows  promising 
performance for protein contact map prediction, there is still room for further improvement. In future studies 
advanced GAN training methods, such as WGAN50, can improve training stability. A symmetric loss 
functions such as the focal loss51 may also boost the predictive power of GAN-based architectures. Overall, 
the presented GAN-based deep learning architecture for contact map prediction can efficiently improve 
overall prediction performance and serves as a powerful new tool for contact map prediction. 
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