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Abstract

Shape skeletons are fundamental concepts for describing the shape of geometric objects, and
have found a variety of applications in a number of areas where geometry plays an important role.
Two types of skeletons commonly used in geometric computations are the straight skeleton of a
(linear) polygon, and the medial axis of a bounded set of points in the k-dimensional Euclidean
space. However, exact computation of these skeletons of even fairly simple planar shapes remains
an open problem.

In this paper we propose a novel approach to construct exact or approximate (continuous)
distance functions and the associated skeletal representations (a skeleton and the corresponding
radius function) for solid 2-dimensional semi-analytic sets that can be either rigid or undergoing
topological deformations. Our approach relies on computing constructive representations of
shapes with R-functions that operate on real-valued half-spaces as logic operations. We use
our approximate distance functions to define a new type of skeleton, i.e, the C-skeleton, which
is piecewise linear for polygonal domains, generalizes naturally to planar and spatial domains
with curved boundaries, and has attractive properties. We also show that the exact distance
functions allow us to compute the medial axis of any closed, bounded and regular planar domain.
Importantly, our approach can generate the medial axis, the straight skeleton, and the C-skeleton
of possibly deformable shapes within the same formulation, extends naturally to 3D, and can
be used in a variety of applications such as skeleton-based shape editing and adaptive motion
planning.

1 Introduction

Geometric skeletons are widely used in a variety of applications that deal with shapes and their
properties, including engineering design and manufacturing. However, there are multiple ways
to define a skeleton of a given set, and a variety of definitions have been proposed for different
applications. Two of the most widely used geometric skeletons are the Medial Axis (MA) and the
so-called straight skeleton (SS).

The Medial Axis has been introduced by Blum [1] for biological shape measurement and de-
scription, and has become an important tool in computational geometry and geometric modeling.
The concept of medial axis has been described with the help of the fire grass concept (see for
example [2]) as follows: if a fire starts from all points of a planar curve at the same time and moves
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with constant velocities in all directions in the same plane, then the MA is the locus of points
where the fire (in fact a moving front) meets itself. The concept can be extended to k-dimensional
geometric shapes in Rk, case in which the MA becomes a set of dimension k − 1. Intuitively, the
points on the medial axis are equally distant to at least two points of the curve as illustrated in
Figure 1(b). Since its formulation, the medial axis has been used as an alternative solid modeling
representation [3], as well as in many other applications such as shape matching and reconstruction
[4, 5, 6, 7, 8, 9], dimensional reduction in boundary value problems [10], representing and classifying
2D shapes [11, 12, 13], human vision [14], pattern analysis and shape recognition [15, 16], and mesh
generation [17, 18, 19].

A concept that is closely related to the MA of a point set is that of a straight skeleton, which
has been defined in [20] for polygons. In 2D, the straight skeleton of a polygon consists of line
segments obtained from trimming the bisectors of the polygon edges, which can lead to ambiguous
constructions (see [20] for details). The SS partitions an n-gon into n polygons that contain only
one of the edges of the original polygon. The straight skeleton and medial axis are identical for
convex polygons, but are different for non-convex polygons. Straight skeletons have been used as
folding directions in origami related problems in computational geometry [21], surface interpolation
between polygonal curves [22], image processing [23] or shape manipulation [24].

(a) (b)

Figure 1: Straight skeleton (a) and the Medial Axis MA (b) of a planar polygon.

1.1 Defining the Medial Axis and Straight Skeleton

As implied above, there is no agreed upon definition of the medial axis in the literature. In this
paper we use the following definition of theMA if Ω is a closed, bounded, regular and semi-analytic
subset of Rk, then the medial axisMA(Ω) is the set of points that have at least two closest points
in ∂Ω – the boundary of Ω. Thus, MA is the set of all centers of the closed maximal balls, and is
a continuous version of the usual Voronoi diagram.

One can construct examples in which Ω is bounded and its boundary is C∞-smooth yet the
MA has infinitely many branches [2]. However, the finiteness of the medial axis has been proven
in [25] for semianalytic bounded open sets Ω ∈ Rk. In the same paper [25], it is proven that the
medial axis of semianalytic sets admits stratification, i.e., it can be decomposed into finite number
of strata, each a connected i-manifold with boundary for i < k. This is particularly important
since a wide variety of shapes encountered in science and engineering, including all solid models,
can be described as semi-analytic sets [26]. Another important result described in [27] states that
a shape and its medial axis are connected the same way regardless of the dimension of the space
(i.e., they are homotopy equivalent), which is exploited in many applications, including those that
focus on shape similarity.
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The straight skeleton has not been defined using a distance function, but through a process of
“skinning” a polygon such that all edges move with the same speed in a “self-parallel” manner, and
each vertex moves along the bisector of its incident edges. Thus, the straight skeleton SS is defined
as the union of the bisector segments that are traced by the polygon vertices as the polygon shrinks,
and has a lower combinatorial complexity than that of the medial axis for non-convex polygons
[20]. Despite of that, computing straight skeletons of polygonal shapes appears to be slower than
MA computations for which linear time algorithms are known [28].

Importantly, both the medial axis and the straight skeleton are uniquely defined for a given
shape, and induce a disjoint partitioning of the shape.

1.2 Prior Art in Computing these Skeletons

There is a massive body of work related to the mathematical and computational properties of the
medial axis, and good surveys can be found in several well written papers on this topic [2, 25, 29].
Here we will briefly discuss some of the relevant research that is closely related to the focus of this
paper.

Although it is possible in principle to compute the medial axis exactly for general semi-
algebraic/analytic sets, we do not seem to have any algorithms for doing so. The most advanced
algorithms make significant simplifying assumptions on the geometry of these sets by focusing on
planar or piecewise linear shapes. Algebraic planar curve segments whose bisectors admit rational
parametrizations are examined in [30], while exact computation of MA for polyhedra is described
in [31]. The reasons behind these restrictions become apparent once the algebraic difficulties in
computing MA are examined [2].

Consequently, these difficulties promoted a variety of algorithms that approximate the complex
shape by a simpler set for which the MA can be computed exactly, followed by the extraction of
the MA of the approximating shape – the so called pruning step. The computed MA has to be
post-processed in order to eliminate the branches that appear in the medial axis due to the shape
approximation. The main approaches to approximately compute the medial axis for piecewise
linear shapes rely on: Voronoi/Delaunay decompositions of space [32, 33, 34] for piecewise linear
approximations of the shape or of planar shapes with curved boundaries [35] where the medial axis
is the Voronoi graph; solutions of partial differential equations (such as diffusion or Hamilton-Jacobi
equations) [36, 37]; and level set methods [38, 39]. Two recent methods to compute the medial
axis for curved planar sets use discrete tracing algorithms along the boundary curves [40] or of
the Frenet frames for pairs of boundary curves that bound a closed planar domain [41]. These
algorithms do not seem to generalize to 3D space, and their stability appears to be problematic in
2D due to the iterative marching.

A fast method to discretely and approximately compute the generalized Voronoi diagram has
been presented in [42], which uses graphics hardware to speed up the computations. For every
point of a planar grid, they compute the shortest distance between the point and all “sites”, which
can be points, lines, or polygons. Hence, non-linear sites require linearization. This, in turn, results
in a piecewise linear approximation of the distance function. The Voronoi regions and boundaries
are then computed based on a simple color buffer algorithm: all points closest to a given site
are assigned the same identifying color, and Voronoi boundaries are detected between points that
change color. The same 2D algorithm is used to approximate 3D Voronoi diagrams by 2D slices
such that each slice is computed independently.

Computing straight skeletons has received much less attention in the literature. Thinning/offseting
appears as a natural approach to construct the straight skeleton. However, several published ap-
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proaches for computing these skeletons are based on “roofing” – i.e. the principle of roof con-
struction [43, 20, 44], and the fastest algorithms for straight skeleton computation seem to be
significantly slower than those for computing MA.

1.3 Scope and Outline

The main goal of this paper is to propose a novel framework for constructing exact or approxi-
mate distance functions and the associated skeletons for solid 2-dimensional semi-analytic sets that
can be either rigid or undergoing topological deformations. We define our shapes constructively
with R-functions that operate on real-valued half-spaces as logic operations, and we show that
we can construct skeletons for any planar semi-analytic set with possibly evolving boundaries and
undergoing topological changes.

Specifically, we show that our approximate distance functions induce a new type of skeleton
– the C-skeleton, which is piecewise linear for polygons, has attractive properties, and generalizes
naturally to planar and spatial domains with curved boundaries. Furthermore, we show that the
introduction of additional half-spaces in the same formulation provides the exact distance function
and the medial axis of any semi-analytic planar set as well as the corresponding radius function. In
this paper we present the necessary and sufficient additional halfspaces for the case of 2D shapes,
and discuss the extensions of this approach to the 3D case. Moreover, we show that our formulation
completely avoids performing trimming and pruning of the computed skeletons.

We review in sections 2.1 and 2.2 the main concepts from the theory of R-functions used in
this paper, as well as the construction of R-functions for planar semi-analytic sets. The definition
of the C-skeleton is given in section 2.3, and the construction of the exact distance function for
convex polygons as well as the extraction of the medial axis are presented in section 2.4. The
extension to domains with holes, moving or curved boundaries is discussed in sections 2.5 and
2.6, while the topological properties and the sensitivity to noise of the C-skeleton are explored in
section 3. Section 4 showcases the capabilities of our approach through several examples. The
paper concludes with a summary of the contributions and limitations of this work, and a discussion
of how this approach can be extended to 3D domain.

2 From Geometry to Distance Functions to R-Functions and Back

2.1 R-functions as Logic Operators on Real-Valued Half-Spaces

In this section we present the fundamental concepts that we use to develop our framework for
computing skeletal representations of a semi-analytic domain Ω. We begin by summarizing the
concept of R-functions1 that we employ to define the approximate or exact distance functions over
the given Ω. We then explain the needed ingredients to construct a single implicit function over Ω
that represents the distance function to the boundary ∂Ω of Ω either exactly or approximately.

For any closed subset Ω of Rk, i.e., a set that contains its boundary points, the distance from
a point P ∈ Rk to the boundary of Ω is usually defined as

d(P) = inf
x∈∂Ω

‖P− x‖. (1)

Consequently, every continuous function f describes a closed set f(P) = 0 that is a subset of Rk,
which further implies that one can construct a C∞ function that vanishes on the boundary ∂Ω of

1Detailed explanations of key concepts behind the theory of R-functions are found in [26].
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Ω. It is known that such shapes are in fact semi-analytic sets of points that can be constructed as
a finite Boolean combination of real analytic functions fi ≥ 0. In other words, one can construct
a Cn function over a semi-analytic subset Ω of Rk by subdividing the boundary of Ω in primitive
halfspaces fi, followed by a combination of fi into a single predicate using the standard Boolean
logic operators AND, OR or NOT [26].

R-functions have been invented in the 60’s by V.L. Rvachev, who called these functions “log-
ically charged functions”. These functions provide the means to construct a Cn function over a
domain defined by primitive halfspaces. In the context of this paper, the main contribution of the
theory of R-functions is to replace these logical operations by real-valued functions, which gener-
ates an implicit representation for any semi-analytic set Ω. Specifically, these functions, whose sign
is completely determined by the sign of their arguments, and independent of any of their magni-
tudes, allow us to construct approximate and exact distance functions over a semi-analytic domain
(assumed here to be planar).

Figure 2: Three implicit representations of the polygonal domain shown in Figure 1 that correspond
to (a) α = 0; (b) α = 0.5; and (c) α = 1.

As explained in [26], there are many systems of sufficiently complete R-functions. One such
system is known as the R1(∆) system:

C ≡ const (logical 1 ) ,
x̄ ≡ −x (logical negation ¬) ,

x1 ∧1 x2 ≡ min(x1, x2) (logical conjunction ∧),
x1 ∨1 x2 ≡ max(x1, x2) (logical disjunction ∨),

which can be generalized to what is called the principal system of R-functions:

Rα(∆) :
1

1 + α

(
x1 + x2 ±

√
x2

1 + x2
2 − 2αx1x2,

)
(2)

where (+) corresponds to the R-disjunction (x1 ∧α x2) and (−) to R-conjunction (x1 ∨α x2). By
varying the value of α, we obtain different systems of R-functions. In particular, by setting α = 1
in equation (2) we obtain the R1(∆) system of R-functions, while a value α = 0 in equation (2)
would result in the R0(∆) system. Such implicit functions are positive inside the domain2, negative
outside and zero on the boundary – see also Figure 2.

2Note that the positive side of any implicit function is subject to convention since f = 0 implies −f = 0.

5



Importantly, when expression under the square root in equation (2) becomes zero, the R-
functions become non-differentiable. In the next section we show how one can use R-functions to
define exact or approximate distance functions for semi-analytic domains. Since the medial axis of
a semi-analytic domain corresponds to the points where the distance function is non-differentiable,
we will be looking for points of the R-function where the expression under the square root vanishes.

Figure 2 shows the difference between the implicit functions constructed over a polygonal domain
with the Rα(∆) system for three values of α. One can see that for α 6= 1, the resulting functions
are differentiable (except at the origin). On the other hand, the implicit function corresponding to
R1(∆) shown in Figure 2(c) is made of piecewise planar patches that intersect at piecewise linear
edges. In fact, by projecting the edges of the R-function surface on the plane of the polygon we
generate a skeleton of the polygon. But how do we construct the function, and which skeleton do
we obtain?

2.2 Constructing Boolean Expressions for Polygonal Domains

Conceptually, the problem of constructing a Boolean expression for a domain bounded by halfspaces
is the same as that of converting a Boundary Representation (B-rep) into a Constructive Solid
Geometry (CSG) representation in Solid Modeling [45]. Many algorithms for performing the B-rep
to CSG conversion for polygons are known and efficient [46, 47], but the complexity of the problem
quickly escalates with the increase in the complexity of the boundary of the domain. Separating
the boundary into primitive pieces is no longer sufficient to construct the Boolean expression of the
domain, because additional halfspaces need to be introduced – the so-called separating halfspaces.
Determining a sufficient set of separating halfspaces is the critical step of any such algorithm, but
the problem is not well understood in general. Solutions exist for planar domains bounded by linear
and curved edges that are subsets of convex curves [48], and solids bounded by linear or quadric
surfaces [49, 50].

In order to construct the Boolean set representation of a polygonal domain, we have developed
a simple algorithm based on the concept of the Convex Deficiency Tree which treats each polygon
as its convex hull minus a finite number of concavities. Note that the polygon is a closed set, so the
subtraction of concavities must necessarily be regularized (i.e., one must use regularized Boolean
operations).

Our algorithm uses three binary indices for each individual linear halfspace fi, i = 1, n, of the
polygonal domain that may have concavity regions (Figure 3). We infer the orientation of each
vector defining an edge from the order in which the polygon is prescribed by the user, and we
use the cross product while marching in a clock-wise orientation around the polygon boundary to
determine whether the current edge is: (1) a concave edge – those edges that are in a concave region
of the polygon (edges 2©, 3© and 4©); or a convex edge (edges 1©, 5© - 8©). Edges that belong to the
last category may or may not be part of the convex hull of the polygon. We differentiate between
convex edges that are on the convex hull of the polygon and those that are not. Figure 3 illustrates
our indexing procedure for an arbitrary polygonal domain, where we initialize the algorithm with
the convex edge 1©. Similar algorithms have been thoroughly studied for restricted classes of shapes
[47, 48].

We use this edge classification to construct the implicit function (halfspace) corresponding to
each edge, such that each halfspace will be positive towards the interior of the polygon. Since we
are seeking to establish a distance function for the polygonal domain, the halfspace defined by each
linear segment of the polygon’s boundary must make an angle of 45o with the plane containing the
polygon. If this condition is satisfied, the value of the function fi(x) at a point x ∈ E2 will be equal
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Figure 3: Sample polygon and its edge indices that we use to identify the concavities.

to the shortest Euclidean distance between x and the line in E2 that generates the halfspace fi.
Constructing the Boolean expression defining the R-function for the polygon relies on the indices

summarized above to decompose the polygonal domain into polygonal subchains meeting at vertices
that are on the convex hull of the polygon. If two halfspaces (or two subchains) of the original
polygon meet at a concave vertex they are combined by set union, otherwise they are combined
by set intersection. Importantly, this construction can be extended to some other point sets,
such as curved polygons [48], 3D polyhedra, and more general 3D solids [51, 50]. Finally, we
perform a syntactic substitution to replace the union and intersection with the R-disjunction and
R-conjunction given in equation (2), which results in an R-function whose zero level set is the
original polygon.

By following this procedure, we obtain an R-function that is the exact distance function for any
convex polygon, and an approximate distance function for a concave polygon, as illustrated in Figure
4. Note that such a distance function is obtained from the principal system of R-functions given
in equation (2) by setting the value of α = 1, i.e., the R1(∆) system. Values of α < 1 correspond
to R-functions over the same polygonal domain that have established differential properties used
in formulating meshfree solutions to boundary value problems [26].

2.3 Ridges and Ravines of the R-function

Observe in Figure 4 that the distance function computed based on the above procedure has a roof-
like structure whose edges are convex (ridges) or concave (ravines). The projection of the edges of
this R-function on the plane of the polygon is the set of points commonly known as the straight
skeleton. Therefore, to compute the straight skeleton, one would need to extract the edges of the
R-function and then project them onto the plane of the polygon. There are several approaches that
one can employ for the edge extraction step.

One intuitive approach would be to use a solid geometric kernel to construct and combine the
halfplanes according to the CSG expression defining the R-function, which would provide the 3D
boundary of the solid volume enclosed by the R-function surface and the plane of the polygon. The
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Figure 4: R-function as a distance function for the original convex polygon. The zero level set of
the R-function is the polygon itself.

advantage of this approach is that one can directly obtain a parametric representation of all the
trimmed curve segments comprising the ridges and ravines of the R-function as illustrated in Figure
12. However, this approach cannot be generalized to 3D domains when the R-function exists in a
4D space.

A second approach that is indeed generalizable to 3D domains and 4D R-functions can take
advantage of the fact that the resulting R1(∆) R-function is not differentiable at the edges. In order
to extract these edges, one can use, the established techniques for edge detection in computer vision
that look for intensity changes in images. These techniques rely on the fact an intensity change
in an image is accompanied by a large (or peak) first directional derivative, which is equivalent to
a zero-crossing in the second directional derivative of the intensity function [52] captured by the
Laplace operator. In this paper we used a commonly used finite-difference approximation of the
Laplacian [53]

∇2f(x, y) ' lij = fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j , (3)

and a line sweep algorithm to identify points in the interior of the polygon where the R-function is
not differentiable.

The straight skeleton contains the projections of both convex and concave edges of the R-
function as seen in Figure 5(a). If, instead, we collect only the points obtained from projecting
the ridges of the R-function, we obtain a subset of this straight skeleton shown in Figure 5(b) that
closely resembles the medial axis of the same domain shown in Figure 5(c). We call this skeleton
a convexized skeleton or C-skeleton for short. Thus,

Definition 1 If Ω is a closed, bounded, and regular subset of the Euclidean space E2, the C-skeleton
of Ω is the projection of the convex edges of the R-function onto the plane of the domain.

There are multiple approaches to detecting the convexity of the edges of the R-function. A good
and relatively recent review of the available algorithms for the detection of ridges and valleys in
computer vision is presented in [54], and a Laplacian based algorithm for ridge and ravine detection
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Figure 5: (a) Straight skeleton of a non-convex domain that contains all ridges and ravines of the
R-function; (b) its C-skeleton that contains only the convex edges (ridges) of the R-function; (c)
the corresponding medial axis of the same domain computed as described in Section 2.4.

is discussed in [55]. A straightforward implementation can be achieved if we observe that the discrete
Laplacian of equation (3) changes its sign between points that are on ridges of the R-function and
points that are on its ravines (see also [55]). Specifically, if we collect all points of the domain for
which the discrete Laplacian of equation (3) is non-zero then we obtain the straight skeleton of the
domain. On the other hand, by collecting the points of the domain where the discrete Laplacian
of the R-function is negative, we obtain its C-skeleton.

One can immediately observe the striking similarity between the C-skeleton and the medial
axis of the domain shown in Figure 5: the C-skeleton has the same number of junction (i.e., non-
differentiable) points as the straight skeleton of the same domain, and the same number of branches
as the medial axis. However, the C-skeleton of polygons is always piecewise linear, so it has a lower
geometric complexity than the corresponding medial axis. A preliminary exploration of some of
the topological properties of the C-skeleton is described in section 3, and the construction of the
R-function for this domain is detailed in appendix 5.

Note that edge detection algorithms that discretize the domain, such as the Laplacian based
edge detection discussed above, will inevitably output points of the skeleton. This point cloud
requires segmentation and reconstruction of individual curve segments, which can take advantage
of a number of commercially available tools and standard CAGD algorithms. While the specific
problem of point cloud processing is outside the scope of this paper, it is important to emphasize
that our R-function formulation provides an elegant approach to point cloud segmentation. This
is so, because the halfspaces generating a given point of the skeleton can be easily identified by
simple evaluations of the corresponding implicit functions. On the other hand, implementing the
R-function construction in a geometric kernel supporting freeform surfaces as well as standard
geometric operations, including surface intersection and projection, will output the medial axis as
curve segments3.

3A solid modeling kernel which uses parametric curves and surfaces would output the medial axis as a collection
of parametric curves.
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2.4 From C-skeleton to Medial Axis

It is not difficult to see that the C-skeleton is identical to the medial axis for convex polygons,
but this is not true for arbitrary polygons. Specifically, in the neighborhood of a concave vertex,
the medial axis contains curved segments that are subsets of the bisector of a point and a line.
This bisector of a point and a line is known to be a parabola which, by definition, is the set of
points equally spaced between the point and the line. Farouki and Johnstone showed in [56] that
the bisector of a planar rational curve and a point in the same plane is another planar rational
curve. Algorithms for computing parametrizations of bisectors encountered for polyhedral domains
(which will necessarily be linear or second order curves and surfaces) have been described in [31].
Elber and Kim showed that the bisectors of two rational space curves, of a point and a rational
space curve, or of a point and a rational surface are all rational surfaces [57, 58]. More recently,
[59] studied algebraic and geometric properties of curve-curve, curve-surface, and surface-surface
bisectors, and [60] provided a fast algorithm for computing curve-curve or point-curve bisectors by
expressing the bisector of two rational curves as a solution to a linear system.

However, in order to obtain these bisectors in the same space as the original planar domain Ω,
we need to add additional halfspaces to the R-function formulation that would generate the correct
bisectors. If appropriate additional halfspaces can be generated, trimmed and added automatically
to the R-function defining the domain Ω such that the new R-function corresponds to an exact
distance function for Ω, then their intersection curves (ridges and ravines of the R-function) in
Ek+1 Euclidean space will generate the medial axis of Ω by projection onto Ek.

We illustrate in Figure 6(a) a 3D view of the procedure: The parabolic bisector between a
point and the line can be obtained by adding at the concave vertex vi a 3D conical surface ci
whose opening angle is π

2 . By intersecting this conical surface with the distance function to a
given line (which is a planar halfspace fj > 0 in 3D) we obtain a conic section. Its projection
onto the plane of the polygon is the bisector between the point P and the line fj = 0 as shown
in Figure 6(b). This implies that in order to construct the exact distance function of an arbitrary
polygonal domain, we need to add an additional conical halfspace ci at every concave vertex vi of
the polygon. However, a simple addition of these conical halfspaces is not sufficient because the
corresponding intersection curves need to be trimmed at points that will generate, by projection,
the junction points of the medial axis (see Figure 6(c)). We perform this trimming process by
adding two additional planar halfspaces h1

i and h2
i for each conical halfspace ci such that the two

additional halfspaces are normal to the two incident edges ei and ei+1 at vertex vi, or h1
i ⊥ ei and

h2
i ⊥ ei+1. In fact, one can show that the addition of a conical halfspace at every concave vertex
vi of a planar domain (not necessarily polygonal) and of two planar halfspaces that are normal to
the two edges incident at vi are not only necessary, but also sufficient for constructing the exact
distance function of the domain bounded by halfspaces fj .

2.5 Domains with Holes and Moving Boundaries

A planar domain may have one or more holes. One of the main advantages of our approach to
compute skeletons based on R-functions is that holes can be easily added to Ω by simply adding
(closed) Jordan curves corresponding to the boundary of each hole. Additional conical halfspaces
are added for the vertices of the polygon defining the hole by following the procedure described
above. The only difference is in where these additional halfspaces are added: a concave vertex
of the interior of the hole becomes a convex vertex of the polygonal domain Ω. The R-function
expression corresponding to the hole is subtracted from the R-function defining the outer boundary
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Figure 6: Additional halfspaces are required to construct exact distance functions for concave
polygons: (a) the conic section obtained by intersecting the halfspace fj with the conical halfspace
added at the convex vertex vi; (b) the bisector between a point and a line is obtained by projecting
this conic section onto the plane of the domain; (c) trimming the bisector by introducing additional
halfspaces h1

i and h2
i normal to the two incident edges at vi.

of Ω with the R-conjunction (see also section 2.1):

f1 ∧1 f2 =
1
2

(
f1 + f2 −

√
f2

1 + f2
2 − 2f1f2

)
. (4)

The connection between R-functions and level sets becomes apparent if one observes that the
domain defining the R-function is the zero level set of the R-function itself as shown in Figure 4.
Level set methods are known to have the ability to track evolving boundaries with and without
topological changes [61], and several optimization problems have been formulated on such higher
dimensional surfaces [62, 63]. An important feature of these optimization methods is that holes
can be easily relocated to perform parametric optimization [64] or they can be relocated to perform
topology optimization [63, 65]. Furthermore, moving boundaries of Ω can be handled as easily,
although some deformations may require one to reconsider the additional halfspaces that need to
be added at convex vertices that become concave during deformation. One alternative is to add
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conical halfspaces at all vertices (both convex and concave), in other words introduce redundancy
into the R-function itself, because these extra halfspaces will not play any role in the R-function
until the corresponding vertex becomes concave.

2.6 Domains with Curved Boundaries

The two main difficulties in adding curved boundary segments to the polygonal domain are to:

1. construct the distance function corresponding to each curved halfspace;

2. adding additional halfspaces to the formulation that would generate the point-curve bisectors.

The problem of constructing distance functions to given curves and surfaces arises in many
applications and has been recently investigated, for example in [66]. This problem can be refor-
mulated as a numerical search for the foot point of a curve or a surface, but the search can be
slow, does not always converge and may not be robust [67]. Given these difficulties, we developed
a different strategy: rather than searching for the point(s) on a curve that is(are) closest to a given
point of the plane in which the curve lies, we

1. enumerate points Pc on the curve,

2. construct a vector nP normal to the curve at each point Pc on the curve that is coplanar
with the curve itself;

3. enumerate points P′c along the line defined by the normal vector nP.

4. set the known distance from P′c to Pc as the value of the distance function that we are looking
for, that is

f(x, y) = d(P′c,Pc)

Observe that this procedure: (1) is general, in the sense that it remains valid for any semi-
analytic halfspace; (2) it enumerates values of the distance function without requiring a search; (3)
it avoids the problems with the foot-point computations mentioned above; and (4) it is conceptually
equivalent to a line that sweeps a halfspace as point Pc travels along the planar curve. This last
point implies that the proposed construction should be followed by a postprocessing step that
would eliminate the self-intersections of the sweeping line. Determining such self intersections can
be non-trivial in the most general case as discussed in [68, 69], and could significantly impact the
performance of the above procedure. Alternatively one could employ visibility tests as in [66] to
perform the trimming of the generated points. The final step requires the interpolation of the
generated point cloud to obtain a continuous surface approximating the distance function to any
desired degree of accuracy.

Figure 7 shows two polygonal domains with one curved boundary segment and their corre-
sponding C-skeletons and medial axes constructed with the procedures outlined above.

It is important to note that adding a conical halfspace ci at every concave vertex vi and two
halfspace h1

i and h2
i normal to the two incident edges at vi is sufficient to generate the bisector of a

point and any planar curve defined by fj . One salient feature of our approach is that curve-curve
bisectors are embedded automatically in the R-function construction and no additional halfspaces
are required.
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Figure 7: C-skeleton (a) & (c) and the medial axis (b) & (d) for two simple polygons with one
curved boundary segment defined by sinx+ 0.7− y = 0 (a) & (b) and (x− 0.9)2 + 0.2− y = 0 (c)
& (d).

3 Topology of the C-skeleton and Sensitivity to Noise

It is known that the medial axis has the same connectivity as that of the domain defining theMA
[27]. This however, is not true for a C-skeleton, which can be a disconnected set even if Ω is simply
connected. More specifically, the medial axis and the C-skeleton are identical for convex polygonal
domains, and therefore the C-skeleton of a convex polygon has the same connectivity as that of its
convex domain. However, for non-convex domains the MA and the C-skeleton are different, and
the C-skeleton may or may not be a connected set depending on the geometry and relative positions
of the halfspaces defining Ω even if Ω is simply connected. A simple example is shown in Figure
8 illustrating the C-skeleton (a) and the medial axis (b) of a simple non-convex polygon and the
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corresponding approximate and exact distance functions. Note that the disconnected C-skeleton
becomes a connected medial axis by introducing the additional halfspaces at the concave vertices
as described above.

The instability of the medial axis with respect to the Hausdorff distance (i.e., small changes in
the boundary of Ω may induce large changes in the MA(Ω)) has been widely studied. This property
of the medial axis is the fundamental reason why a pruning step (essentially heuristic) is required
when computing the medial axis of a noisy point sample (see [2, 33] for details). One immediate
implication of the topological property of the C-skeleton described above is that one could use the
disconnected C-skeleton of a noisy point sample to prune the approximated medial axis when the
domain Ω is approximated by a finite point set. For the case shown in Figure 8, if the coordinates
of the bottom-most point reflect the “noise” in the data, one would prune the vertical segment of
the medial axis. However, developing such an algorithm is beyond the scope of this paper.

Figure 8: C-skeleton (a) and medial axis (b) of a simple non-convex polygon. The corresponding
approximate and exact distance functions are shown in (c) and (d). Note the changes in the distance
function generated by the introduction of the additional halfspaces at the two concave vertices of
the polygon. These changes transform the (disconnected) C-skeleton into the (connected) medial
axis.
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4 Examples

In this section we describe several examples that display the capabilities of our approach. As
mentioned in section 2.3, one could construct the distance functions within a solid geometric kernel
to construct and combine the halfspaces according to the CSG expression defining the R-function.
This, in turn, provides the boundary of the solid bounded by the R-function and the plane of the
planar domain, as well as a parametric representation of all the trimmed curve segments comprising
the ridges and ravines of the R-function. One disadvantage of this approach is that it does not
generalize to 3D domains when the R-function exists in a 4D space. Alternatively, one can construct
the R-functions programmatically, followed by an edge detection algorithm, and by projection of
all or some of these edges onto the space of the domain, as discussed in Section 2.3. Such a
numerical procedure can be followed by a fairly simple segmentation of these points to identify the
halfspaces that generate a particular point of the skeleton (this segmentation amounts to repeated
function evaluations), as well as by a reconstruction step to fit piecewise polynomial curves (and
surfaces in 3D) to the segmented point sets. All numerical results provided here have been obtained
by implementing the described approach in Matlab, while the last example was constructed in
Unigraphics.

The first example shows a non-convex wrench-like polygonal domain with 14 edges and 3 holes.
By definition, the C-skeleton of such a domain must only contain straight line segments, but MA
will contain both linear and parabolic curve segments. The Boolean expression is computed in four
steps by constructing one R-function for the polygon itself, and three separate R-functions for the
three holes. These four R-functions are combined with the appropriate Boolean operators. Finally,
ridges are detected and projected to the x − yY plane as described in section 2.3 to obtain the
C-skeleton. Converting the C-skeleton into MA requires the addition of conical halfspaces ci and
trimming halfspaces hi to the Boolean set expression according to the rules described in Section
2.4. The computed C-skeleton and medial axis are shown in Figure 9.

(a) (b)

Figure 9: C-skeleton (a) and the medial axis (b) of a planar domain with holes.

In the next example, the domain defined in Figure 9 undergoes topological changes generated
by scaling the holes while translating in the positive x direction. Observe that the boundary of the
holes will collide with the outer boundary of the polygon and with each other which will generate
drastic topological changes as shown in Figure 10. Importantly, the Boolean expression defining
the domain does not change, but the C-skeleton and the medial axis adapts to the topological
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changes. This shows that our approach can track changes in the skeletons induced by changes in
the boundary of the domain within the same formulation even when subjected to drastic topological
changes. The final domain shown in Figure 10(d) is a non-manifold disconnected planar domain.
It is also important to note that each halfspace affects only a subset of the skeleton, and that
our approach explicitly provides the correspondence between any particular branch of the skeleton
and the halfspaces that generate that particular branch. This can be exploited, in principle, to
develop adaptive computations of the changes induced by transformations of the domain boundary
that could result in localized computations of the changes in the skeleton shape induced by local
modifications in the boundary of the domain.

Figure 10: The MA adapts to topological changes of the boundary of Ω.

The third example illustrates a domain that contains one curved boundary segment and seven
holes. Constructing the Boolean set expression for this shape follows essentially the same procedure
as the one described above. The only difference is in how the halfspace defined by the curved
segment was constructed, which followed the procedure described in section 2.6. The computed
C-skeleton and the medial axis of this domain are shown in Figure 11. For this example the curve
is defined by

ax3 + by5 + c = 0 (5)

where a, b and c are constants. Clearly the medial axis will contain curved bisecting segments, as
shown in Figure 11(a). Unlike previous cases, the curved boundary will introduce curved branches
in the C-skeleton. Since the Boolean expression for the C-skeleton will not contain the conical and
trimming halfspaces, the corresponding curved segments of the C-skeleton will be different than
those of the medial axis.

The final example shown here is a planar domain bounded by piecewise cubic polynomial seg-
ments as illustrated in Figure 12(a). The C-skeleton and the corresponding approximate distance
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(a) (b)

Figure 11: Medial axis and C-skeleton for a sample polygon with one curved segment. The curve
is defined by equation ax3 + by5 + c = 0. The C-skeleton contains both linear and curved branches
due to the curved boundary of the domain.

function are shown in Figure 12(b) and (d). By introducing a conical halfspace as well as two
additional trimming halfspaces h1 and h2 (not shown) at the concave vertex, we can construct
the exact distance function shown in Figure 12(e) and extract the medial axis as seen in Figure
12(c). Note that, in this example, the approximate and the exact distance functions have been
constructed in Unigraphics based on the R-function predicate. The edges of the distance functions
have been obtained by intersecting the halfspaces according to this Boolean expression, and are
piecewise polynomial curves. Their projection onto the plane of the domain provides the C-skeleton
and medial axis of this domain bounded by NURBS curves.

5 Conclusions

We propose a novel and powerful approach to construct either exact or approximate distance func-
tions and the associated skeletal representations for 2-dimensional semi-analytic sets that can be
either rigid or undergoing topological deformations. Our distance functions are defined construc-
tively based on R-functions that operate on real-valued half-spaces as logic operations.

In particular, we showed that R-functions can be used to construct approximate distance func-
tions over a domain defined by primitive halfspaces, where the R-functions replace the correspond-
ing logical operations by real-valued functions. In turn, this results in an implicit representation of
the approximate distance function for any semi-analytic planar domain. Furthermore, we showed
that the constructed approximate distance function corresponds to a new type of skeleton, the
C-skeleton, which is piecewise linear for polygons, has attractive properties, and generalizes nat-
urally to planar and spatial domains with curved boundaries. Importantly, the C-skeleton closely
resembles the medial axis of a planar domain, but has a lower geometric complexity. Its properties
make the C-skeleton very appealing for a variety of applications where medial axis is currently
being used.

By adding conical and trimming halfspaces at every concave vertex of the domain, the approx-
imate distance function is transformed into an exact distance function. Furthermore, the medial
axis, which corresponds to the ridges of the exact distance function, can be extracted either alge-
braically – by combining the corresponding halfspaces according to the Boolean expression defined
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Figure 12: C-skeleton (b) and medial axis (c) of a planar domain bounded by NURBS curves (a).
The corresponding approximate and exact distance functions are shown in (d) and (e).

by the R-function as illustrated, for example, in Figure 12, or numerically.
Moreover, several other critical features prove the generality and flexibility of our approach.

Specifically,

• the proposed C-skeleton is the same as the straight skeleton for convex polygons, but has
fewer edges for concave polygons. For piecewise linear shapes, the C-skeleton has the same
number of branches as the medial axis, but a lower geometric complexity due to its piecewise
linear structure;

• the construction of the exact distance function and medial axis of a planar domain only
requires the addition of a conical halfspace as well as of two trimming halfspaces to the
Boolean expression defining the approximate distance function for every concave vertex. In
fact, if one adds these halfspaces for every vertex of the domain (both concave and convex), the
halfspaces will automatically contribute to the exact distance function and the corresponding
medial axis as long as the corresponding vertex is concave, while these halfspace will have no
effect for convex vertices. This is particularly important for domains with evolving boundaries
because it eliminates the need to keep track of the convexity of vertices;

• the straight skeleton, C-skeleton and medial axis of a planar domain can be all generated
within the same formulation. Moreover, due to its Boolean nature, the same formulation can
handle both rigid or deformable domains, possibly undergoing drastic topological changes.
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This feature becomes particularly useful in those applications where the environment is not
fully known a priori, such as adaptive motion planning in dynamic environments;

• the C-skeleton can be disconnected even if the domain is simply connected. This important
property of the C-skeleton can, in turn, be used to trim the branches of the medial axis that
appear due to noise in the data, i.e., the so called pruning problem;

• our approach supports multiple representations of the input geometry. In fact, we have
proposed a simple and efficient algorithm for constructing an implicit representation of a
planar curve (and of its associated halfspace) directly from its parametric representation,
which could be a practical alternative to the usual foot-point computations;

• the proposed approach could be implemented in any existing commercial CAD systems and
geometric kernel that supports freeform surfaces and standard geometric operations on sur-
faces.

Finally, our approach extends naturally to 3D. This case would require additional trimmed
halfspaces beyond those discussed in this paper, but the generalization of our formulation to 3D
appears to be possible because the mathematical foundation remains valid.
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Appendix: Constructing the R-function for a Non-convex Polygo-
nal Domain

We revisit here the domain illustrated in Figure 5 and assume that each linear edge is part of a
halfspace that represents the exact distance function to the carrier of the line.

The domain shown in Figure 13 has three concave vertices. Since each vertex is shared by two
incident edges, we denote by

z1 = (f2 ∪ f3) (6)
z2 = (f5 ∪ f6) (7)
z3 = (f8 ∪ f9) (8)

the halfspaces defined by the incident edges at each of the three concave vertices, whose positive
side points towards the interior of the domain. Therefore, the Boolean expression generating the
approximate distance function can be written as:

f(x, y) = (f1 ∩ f4 ∩ f7) ∩ (z1 ∩ z2 ∩ z3). (9)

The R-function is constructed by performing a syntactic substitution of the Boolean operations with
the corresponding R-disjunction and R-conjunction from equation (2), and the resulting function
is illustrated in Figure 13(c). The ridges of this approximate distance function are projected onto
the plane of the polygon to obtain the C-skeleton shown in Figure 13(a).
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Figure 13: The halfspaces defining a polygonal domain (a) and the corresponding approximate
distance function (c); trimmed conical halfspaces are added in (b) and the exact distance function
is illustrated in (d) together with the contribution of the trimmed conical halfspaces.

The approximate distance function given in equation (9) can be converted into an exact distance
function by adding trimmed conical halfspaces at the concave vertices as follows

z1 → z1 ∪ (h1 ∩ h2 ∩ c1) (10)
z2 → z2 ∪ (h3 ∩ h4 ∩ c2) (11)
z3 → z3 ∪ (h5 ∩ h6 ∩ c3). (12)

The effect of these trimmed conical halfspaces on the resulting distance function is illustrated in
Figure 13(d). Therefore, the exact distance function will be given by the same equation (9), but
with the new halfspaces zi, i = 1, 2, 3 that contain the trimmed conical halfspaces. The projection
of this exact distance function generates the medial axis shown in Figure 5(c).
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