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Abstract

Practically all existing shape analysis and processing algorithms have been developed for specific geometric representations of 3D
models. However, the product development process always involves a large number of often incompatible geometric representations
tailored to specific computational tasks that take place during this process. Consequently, a substantial effort has been expended to
develop robust geometric data translation and conversion algorithms, but the existing methods have well known limitations.

The Maximal Disjoint Ball Decomposition (MDBD) was recently defined as a unique and stable geometric construction and used
to define universal shape descriptors based on MDBD’s associated contact graph. In this paper, we demonstrate that by applying
graph analysis tools to MDBD in conjunction with graph convolutional neural networks and graph kernels, one can effectively extract
solid geometric features, such as design and manufacturing features, from geometric models regardless of their native geometric
representation. We show that our representation-agnostic approach achieves comparable performance with state-of-the-art geometric
processing methods on standard yet heterogeneous benchmark datasets while supporting all valid geometric representations.

1. Introduction

1.1. Motivation
An abundance of geometric representations have been defined

and tailored to specific engineering applications over the last five
decades. For example, NURBS [1] have been the golden stan-
dard as a primary boundary representation in all commercial me-
chanical CAD systems because they are able to represent “free-
form” geometry with guaranteed differential properties while
providing access to intuitive geometric controls structures to de-
fine and edit geometry; triangular meshes [2] are heavily used
in graphics applications due to their simplicity and uniformity,
which simplify the corresponding processing algorithms, as well
as due to their amenability to massive software and hardware
accelerations; structural finite element analysis [3] uses solid
meshes of the geometry to approximate the solutions of the as-
sociated boundary value problems; subdivision surfaces [4] have
found their footing in animation and visual effects over the past
decades; point clouds are output by depth cameras and can dis-
cretely capture the geometry and, in the presence of appropriate
processing algorithms, the topology of a physical artifact. Im-
portantly, these and many other specialized representations have
been developed for specific computational tasks needed during
the product development process, which, in turn, produced a
massive demand for the representation conversion services. Un-
fortunately, converting between existing geometric representa-
tions is far from being a trivial or solved problem, and every
such conversion generates some information loss that is in gen-
eral not well understood. Therefore, it is not surprising that cur-
rent shape analysis systems have limited ability to handle mod-
els that natively exist in different representations having different
levels of informational content. In fact, the theoretical and prac-
tical challenges of model interoperability prompted alternative
proposals aimed at defining the queries used between software
systems rather than the geometric data formats being exchanged
[5].

On the other hand, deep learning methods have reached a high
level of performance in 2D image analysis. However, applying
deep learning methods to the analysis of 3D shapes is much more
challenging, partly because there are significantly fewer sources

of 3D models than 2D images available for training, and partly
because of the exponential growth in the associated computa-
tional cost. For example, smart phones have democratized 2D
imaging, while 3D models are still being created by skilled users.
Furthermore, there is essentially one common and widely used
representation for images, while there are numerous geometric
representations used for 3D models. Consequently, it is not sur-
prising that current data-driven methods can only provide lim-
ited shape analysis support for 3D shapes, which is why new
paradigms for deep learning-based shape analysis approaches
need to be developed.

A new geometric concept that can be used as a proxy geo-
metric representation and computed for any other valid geomet-
ric representation was introduced in [6]. The concept relies on
the concept of distance, which has to be supported by any and
all valid geometric representations, to define a maximal disjoint
ball decomposition (MDBD) for a given 3D solid domain. In-
formally, MDBD recursively packs the largest spheres inscribed
in the domain, is unique up to isometric transformations, and is
stable against small boundary perturbations, which makes it ide-
ally suited to shape similarity, segmentation and processing, and
particularly for datasets containing heterogeneous geometric rep-
resentations.

MDBD captures the geometry and topology of a given domain
through the tangency patterns of the spheres in the maximal ball
decomposition as well as by their radii. The tangency pattern
can be described by a graph whose nodes are the centers of the
spheres, and whose edges connect the centers of mutually tan-
gent spheres. Given the maximality constraint applied on the
spheres and the hierarchical nature of the decomposition, MDBD
captures the geometry and topology of a domain using a sparse
weighted graph, which tends to be more compact in terms of the
size of the respective data structures than a typical mesh, point
cloud, or volumetric representation of the same domain. In this
paper, we show that MDBD can be used not only to define repre-
sentation agnostic shape descriptors, but also to perform various
shape analysis tasks by using graph theory and graph analysis
tools.
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1.2. Shape Descriptors

Shape descriptors can be thought of as mathematical abstrac-
tions defined on geometric representations that capture geometric
characteristics of shapes and constitute the foundation of most
existing shape analysis methods. Measuring the similarity of
shapes is one of the most common tasks in shape analysis, which
is usually defined in terms of some notion of ”distance” between
the corresponding shape descriptors.

Many shape descriptors have been defined for this purpose. In
[7], by approximating a 3D model with a union of spheres (UoS)
hierarchies along with the zero alpha-shape of the UoS [8], fea-
ture matching between two models could be reduced to a pre-
defined distance between their corresponding spheres. The Heat
Kernel Signature (HKS) [9] and its variants [10] use a pseudo-
heat diffusion defined on the model, and capture local shape fea-
tures of a mesh or a point cloud model [11] up to isometry. Due
to its roots in heat diffusion, the HKS is stable against boundary
noise. At the same time, HKS relies on an appropriate defini-
tion of the Laplacian, which is representation dependent. Even
for a given geometric representation, there are infinitely many
ways to define discrete Laplacians [12], so it is not surprising
that HKS has not been used to measure similarity across differ-
ent geometric representations. Area Projection Transform (APT)
[13] measures the likelihood of points in 3D space to be the cen-
ter of radial symmetry at selected scales. APT detects salient
regions, such as almost spherical and cylindrical surfaces, and
the APT histogram across multiple scales can be used as shape
descriptors for non-rigid shape retrieval.

Furthermore, machine learning methods can be and have been
trained to classify shapes based on a given shape similarity met-
ric. Deep neural networks (DNNs) have been used to learn shape
descriptors from volumetric datasets. A large number of convo-
lutional architectures have been designed for binary and proba-
bility distribution 3D grids [14, 15, 16, 17, 18]. However, these
networks can currently only handle low-resolution models, such
as 32 × 32 × 32, due to the limited supply of available data and
the limit imposed on the computational resources by the cubic
increase of the size of the input data with the increase in the res-
olution. Another class of approaches classify shapes by using 2D
projections coupled with 2D convolutional neural networks op-
erating on the corresponding 2D images [19, 20, 21, 22, 23, 24].
Although these methods achieve a high classification accuracy,
they have not been shown to capture 3D topological features
or be capable of performing feature recognition. Furthermore,
we do not know what directions and how many projections
are needed to achieve reasonable classification accuracy. Some
DNNs have been shown to perform well when dealing with spe-
cific classes of models, such as models of human body [25] and
hand [26]. However, these methods do not generalize due to their
assumptions used in localizing landmarks.

1.3. Related Work in Graph CNN and Graph Kernels

Graph convolutional neural networks (Graph CNNs), as a
generalization of CNNs from regular grids to arbitrary struc-
tures, have shown their potential to extract features from struc-
tured data. Many graph CNNs have been proposed with vari-
ous localized graph convolutional filters (convolution operators),
which define how the node features aggregate in a neighborhood.
SplineCNN [27] applies B-spline bases that are parameterized by
a set of trainable control values as convolution kernels, and the
neighborhood in the spatial domain is delimited by utilizing the
local support of B-splines. Topology Adaptive Graph Convolu-
tional Networks (TAGCN) [28] define the convolution operator

as the matrix-vector product between a polynomial of the nor-
malized adjacency matrix of the graph and the node feature vec-
tor. TAGCN achieves a better performance than spectral graph
CNNs, and has a lower computational complexity. A detailed
review of Graph CNNs can be found in [29].

Graph kernels, as a special class of kernel methods, measure
the similarity between two graphs and must be symmetric and
positive semi-definite. A good recent review of graph kernels ap-
pears in [30]. R-convolution kernels are a family of kernels that
measure the similarity between objects through their substruc-
tures, which include paths, sub-trees, cyclic patterns, and sub-
graphs. Random Walk kernels [31] and Shortest-Path [32] ker-
nels focus on graph paths. Graphlets [33] characterize a graph by
counting the number of specific small sub-graphs. R-convolution
kernels generally have very high time complexities. For example,
the time complexity of random walk kernel is O(n3), which can
be reduced to O(n2) with approximate algorithms [34], where n
is the number of nodes in a graph.

The Weisfeiler-Lehman Graph Kernels [35] form another fam-
ily of graph kernels based on the Weisfeiler-Lehman test of graph
isomorphism. They have a smaller computation complexity than
R-convolution kernels in general, making them a better choice
for large graphs. However, most of these graph kernels do not di-
rectly support continuous node attributes such as the sphere radii.
Togninalli et al. [36] proposed a Weisfeiler–Lehman-inspired
embedding scheme for graphs with continuous node attributes
and defined the graph Wasserstein distance to measure the simi-
larity of graphs.

1.4. Contributions
In this paper, we show that the Maximal Disjoint Ball De-

composition can be effectively used in conjunction with graph
analysis tools for shape similarity and geometric processing and
analysis, and particularly for datasets containing heterogeneous
geometric representations. Since MDBD only requires the abil-
ity to compute distance, it can be used with any valid geometric
representation and across multiple such representations.

First, we show that MDBD captures global shape features, and
we design a DNN based on graph CNNs whose input is precisely
the MDBD tangency/contact graph. We test our network with
3 well-known graph convolution methods and show that by ex-
ploiting the MDBD tangency graph, the established graph con-
volution algorithms achieve a comparable classification accuracy
with that of other leading classifiers on a widely used bench-
mark dataset, but with a significantly lower number of param-
eters. Moreover, by using the MDBD contact graph for global
shape features, one can perform shape classification on datasets
that use any number of valid geometric representations.

Furthermore, we propose a graph kernel that exploits the hi-
erarchical structure of MDBD and has linear time complexity.
We show that this graph kernel can be effectively used to mea-
sure shape similarity of models having distinct geometric repre-
sentations. At the same time, by taking advantage of neighbor-
hood sub-graph matching, the new graph kernel can be used to
perform sub-structure matching, which leads to novel, powerful,
and representation-agnostic feature recognition algorithms that
can hardly be built with existing shape descriptors.

2. Preliminaries

2.1. Maximal Disjoint Ball Decomposition
Let Ω be a compact regular semi-analytic subset of the Eu-

clidean 3-space, also known as an r-set [37]. Its corresponding
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Maximal Disjoint Ball Decomposition (MDBD) is denoted by
MΩ, and we follow the same notation as in [6].

Intuitively, the decomposition process, illustrated in Figure 1,
recursively adds the maximal d-dimensional closed ball bi ∈ Ω
such that ibi

⋂
ib j = ∅,∀i , j and ibi

⋂
∂Ω = ∅, where iX de-

notes the interior of a set X, ∂X its boundary, and bi is the closed
maximal ball inserted at step i. Computing MΩ starts by first
computing the Signed Distance Field (SDF) of Ω, which needs
to be computed only once. This field is then updated efficiently
as maximal balls are being added to the remaining subset of the
domain at every step of the hierarchy. The geometric information
queries needed during decomposition are distance computations,
and the ability to perform point membership classification. Thus,
we can construct MDBD for any valid geometric representation
and define universal shape descriptors that handle distinct geo-
metric representations. We use HAVOC3D[38] to compute the
unsigned distance field, and then use PMC to compute the sign
and convert the unsigned distance field into an SDF. Note that
this implementation must handle the various geometric represen-
tations that are being considered. In principle, one can use any
of the existing algorithms that compute the SDF [39, 40, 41].

Given a domain Ω, the maximal ball at step i is denoted as
bi(ci, ri), where ci is the center of the ball, and ri its radius. The
SDF at step i is defined as

DΩi (p) = sgn(p) min
q∈∂Ωi

||p − q||2, and

Ωi = Ω −∗ (∪∗j∈[0,i−1]b j),

where p and q are position vectors of two points, sgn is the usual
sign function with binary values {0, 1}, and ‘∗’ implies the regu-
larized versions of the standard Boolean operations [37]. Conse-
quently, ci and ri are calculated as

ci = arg max
p∈Ωi

DΩi (p),

ri = DΩi (ci).

Figure 1: Recursive generation of the Maximal Disjoint Ball Decomposition.

2.2. Contact Graph Definition and Notation
We denote a directed graph by G = {V, E}, where V =

{v1, v2, ..., vn} is an ordered set of n vertices and E is the edge
set comprised of directed edges. As usual, the function f : E →
V × V , with f (ek) = (vi, v j) provides the direction of travel for
edge ek from vi to v j but not vice versa. Observe that self-
connected vertices are not allowed, that is (vi, vi) < E. For an
unweighted graph, its adjacency matrix is defined as an n × n
matrix Ã with Ãi j = 1 if (vi, v j) ∈ E and 0 otherwise. For a
weighted graph, Ãi j = w ji where w ji is the weight assigned to
edge (v j, vi) ∈ E.

A graph G′ = {V ′, E′} is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.
A walk, or path, in G is a sequence of edges in E that connect a
sequence of vertices in V; it is a subgraph of G by definition; and
may form a cycle in G. The induced-subgraph on a set of vertices
S ⊆ V is a subgraph of G whose vertex set is S , and whose edge
set consists of every edge in E whose both endpoints are in S ,
which is denoted by G[S ].

The distance between two vertices v and u of a directed graph
G is measured in terms of the smallest number of hops from the
source vertex u to the target vertex v. The neighborhood of v
in range K is the set of vertices of G having a distance from
v equal to or smaller than K, and is denoted by N(v,K). The
neighborhood N(v,K) induces a subgraph of G of size K.

By definition, MDBD contains infinitely many spheres, and
therefore one operates in practice with truncated decompositions.
A truncated MDBD of domain Ω comprised of the first n max-
imal spheres is denoted as MΩ(n) B {b1, b2, ..., bn}. The tan-
gency pattern of its maximal balls can be described by a graph
G = {V, E}, called the contact graph of MDBD, where the vertex
set V = {v1, v2, ..., vn} corresponds to the n balls in MΩ and edge
set E captures the mutual tangency of the respective balls. Thus,
if ball bi is tangent to ball b j, we have (vi, v j) ∈ E. For vi ∈ V ,
we have the corresponding ball bi = {ci, ri}, where ci and ri are
the center and radius of the ball, respectively. V = {v1, v2, ..., vn}

is ordered based on the radii of the corresponding balls, that i,s
r1 ≥ r2... ≥ rn. Hence, rn = {r1, r2, ..., rn} is the radius list of the
truncated decomposition MΩ(n).

Weights can be assigned to each node and edge as either dis-
crete labels or continuous variables. MDBD will assume node
and edge attributes that capture the specific geometric informa-
tion of the maximal balls, and can vary depending on the domain
of the application.

3. Shape Analysis Applications

In this section we demonstrate that MDBD in conjunction with
graph-based methods can be effectively used to perform three
specific yet ubiquitous shape analysis tasks: shape classifica-
tion, articulated shape retrieval, and substructure matching, or
feature recognition, among objects using valid geometric repre-
sentations.

Our method can analyze 3D models that use any valid geomet-
ric representation within a uniform computational framework,
and with competitive classification performance. At the same
time, the MDBD contact graph possesses unique characteristics
that make it ideal for shape analysis and classification, such as
the geometry and topology-aware hierarchical structure induced
by MDBD. As shown in the experiments detailed in this sec-
tion, this hierarchical structure allows MDBD-based shape anal-
ysis methods to focus on the appropriate and meaningful model
substructures and do not incorrectly favor the peripheral areas of
the models, which is one key limitation of the existing methods.
Furthermore, we expect that the attention mechanism [42] devel-
oped in the context of natural language processing can further
improve the classification accuracy of the MDBD-based shape
analysis methods.

3.1. Shape Classification with graph CNNs

As a special case of shape similarity, shape classification is
one of the most common shape analysis tasks, and many spe-
cialized methods have been proposed to handle classification of
models having a single geometric representation. In this section,
we show that the MDBD graph can be directly used for shape
classification of models using any valid geometric representation
in conjunction with graph Convolutional Neural Networks. To
this end, we integrate 3 well known graph convolution methods
within the same straightforward neural network architecture, as
described below, and we compare the classification performance
with that of other leading classifiers.
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Model. Unlike traditional convolutions on grids integrating the
values of a rectangular window around each pixel, the convolu-
tions on graphs combine vertex and edge features from a graph
neighborhood within a prescribed range.

For comparison purposes, we implemented several known
graph CNNs in Pytorch Geometric [43], and the results of the
comparisons are described below. The architecture of our neural
network is shown in Figure 3, including the dimensions of input
and output channels displayed as numbers in parentheses, which
also represent the dimensions of node attribute at each stage.

Data. We evaluate our neural network on the ModelNet10
dataset [14], which consists of 10 categories of 3D mesh models,
with 3,991 models for training and 908 models for testing. We
eliminate from this dataset the models that are not solid models
(closed, regular, semi-analytic sets, or r-sets [37]). Thus, the re-
sulting dataset contains 3,957 models that we use for training and
905 models that we use for testing. Some samples of the dataset
are shown in Fig 2.

We built the graph of MDBD for each 3D mesh model as fol-
lows. The node attribute for vertex vi is assigned to be [ci, ri/r1]
where ri/r1 is the radius of the ith ball normalized by the radius of
the largest ball in the decomposition. The edge attribute for edge
(vi, v j) is assigned to be 1/deg(vi). The number n of vertices of
each graph is chosen to be n = 512. We use the Adam optimizer
and cross-entropy loss for training, and a warm-up applied at the
beginning of the training, followed by a cosine annealing learn-
ing rate schedule. Batch normalization and dropout are used to
avoid over-fitting. We exploited the GPU architecture to accel-
erate the training-related computations. The training process is
implemented in Pytorch.

Details of training performance. The CPU used for the training
is Intel(R) Xeon(R) Gold 5218 @ 2.30GHz. The GPU is Quadro
RTX 6000. The time cost of one batch is about 0.01s. The time
cost of one epoch is about 9s. The number of epochs used for
convergence is 200, and the memory used during the training
process is 93.8 MB.

Results. As shown in Table 1, the three graph CNNs imple-
mented in our simple architecture and processing the MDBD
contact graph achieve comparable accuracy with other leading
neural networks that operate directly on the 3D models. We
note that our neural networks implemented with graph CNNs
have significantly fewer parameters than other leading neural net-
works, and that TAGConv has the lowest number of parameters
while achieving a similar classification accuracy with other graph
CNNs. Moreover, the existing methods for shape classification
assume and are tailored to specific geometric representations and
have not been shown to support datasets with multiple geometric
representations.

3.2. Articulated Shape Retrieval

The task of shape retrieval is to find the most similar models to
a given query model within a model database, and relies on a 3D
model similarity metric. There are various established techniques
that have been developed based on various shape descriptors, as
summarized in section 1.2, and for single and specific geomet-
ric representations. However, these methods do not generalize to
other geometric representations without requiring a representa-
tion conversion, and may not handle articulated models because
the metrics may not maintain consistency for models in different

poses. This, in turn, suggests that these metrics may fail to deter-
mine similarity of 3D engineering models comprised of identical
features, but with inconsistent spatial location.

More recent approaches to pose estimation introduce an in-
termediate representation, such as the Articulation-aware Nor-
malized Coordinate Space Hierarchy (ANCSH) [50], which is
a canonical representation for different articulated objects in a
given category that captures the normalized poses and scales, ori-
entations, and the states of the kinematic joints. The method in
[50] has been specifically designed for point clouds representing
articulated objects that contain revolute and prismatic lower kine-
matic pairs, but its generalization to the analysis of engineering
models has not been documented.

On the other hand, the MDBD subgraphs corresponding to in-
dividual features are well suited for establishing a generic shape
correspondence of articulated and/or feature-based models, and
allow us to incorporate high-level shape semantics into the shape
analysis pipeline.

3.2.1. A New and Efficient Graph Kernel Based on Hierarchical
Random Walks

In this section we show how one can measure the similarity
between MDBD graphs of two geometric models by establishing
an effective graph kernel based on random walks.

Random walk based kernels [31] measure the similarity of two
graphs by counting the same walks shared by the two graphs.
These kernels often assume that node attributes of the vertices
are discrete labels, which is not appropriate for our task because
the ball radii are real numbers. We designed a modified graph
kernel based on random walks on a graph that supports continu-
ous node attributes and accommodates the hierarchical structure
of MDBD.

Random walks on graphs are special cases of Markov Chains
that characterize system transitions from one state to another by
probabilistic rules. Here, the system state is the node attribute
distribution. For a graph G = {V, E} with |V | = n and |E| = m, let
the column vector pt ∈ Rn denote the node attribute distribution
at time step t.

For an edge (vi, v j) ∈ E, we define the corresponding edge
weight as 1

deg(vi)
, where deg(vi) is the number of vertices directly

connected to vi or, equivalently, the number of edges incident
at vi. Consequently, the probability of a hop happening from
vi to v j is equally shared by the neighbors of vi. The transition
matrix for the random walk is defined as the weighted adjacency
matrix of G, Ã, whose elements are the weights wi j = 1

deg(vi)
, i , j

representing the probability of a hop from vi to v j, and wii = 0.
The node attribute distribution is iteratively reassigned during the
random walk according to

pt = Ãpt−1.

Hence, we can construct the feature vector for the graph directly
from the results of the random walk process.

As mentioned above, the maximal balls of the MDBD of a
domain are ordered according to their radii. Consequently, the
larger balls will capture the larger geometric and topological at-
tributes of the domain, while the smaller balls will tend to cap-
ture the smaller details of the shape. Thus, we select the first nr
balls as the representatives for the entire group, and their node at-
tributes represent the system state. For a representative node, the
weighted average of its node attribute over t time steps is defined
as:

Pi =
1
t

t∑
k=1

wk
t pk

i ,
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Figure 2: Model samples from ModelNet10 dataset [14], which consists of 10 categories of 3D mesh models.

Figure 3: The architecture of our neural network: each vertex initially has four node attributes, namely the center coordinates and the radius of the corresponding ball;
the two graph CNN layers extract features directly from the input layer of graph data and have 128 channels on their output; the multilayer perceptron layer concatenates
and merges the node attributes from the graph CNNs; a global maximum pooling finds the largest value in each channel over all the nodes of the graph resulting in a
shape feature vector with 256 elements; finally two fully-connected layers reduce the dimension of the feature vector and this dimension captures the number of classes.

Network Accuracy (%) Data Type # of Para. (Million)
3D ShapeNet [14] 83.5 Voxel ≈ 38

3D-GAN [44] 91 Voxel ≈ 11
VoxNet [45] 92 Voxel ≈ 0.92
VRN [46] 91.33 Voxel ≈ 18

LP-3DCNN [47] 93.76 Voxel ≈ 2
FusionNet [48] 93.11 Voxel ≈ 118

Our NN with TAGConv 90.90 Graph ≈ 0.24
Our NN with SplineConv 90.68 Graph ≈ 0.64
Our NN with ARMAConv 91.34 Graph ≈ 0.57

Table 1: Comparison of the classification results of our neural network implemented with TAGConv [28], SplineConv [27], and ARMAConv [49], respectively,
compared with other leading classification algorithms for models from the ModelNet10 database [14]. The 3 graph CNN algorithms perform the classification directly
on the MDBD contact graph.

where wt is set as 0.9 in our experiments. The feature vector for
the graph is defined as the concatenation of the initial node at-
tributes and their weighted averages of the representative nodes:

f(G) = {p0
1, p0

2, ..., p0
nr
, P1, P2, ...Pnr } = {p0

nr
(G),Pnr (G)}. (1)

Given two graphs G1 and G2, the distance between the feature
vectors is defined as the weighted sum of the difference between
their components:

d(G1,G2) =

nr∑
i=1

λi
a|p

0
i (G1) − p0

i (G2)| +
nr∑

i=1

λi
b|Pi(G1) − Pi(G2)|,

(2)
where the parameters λa, λb are set as λa = λb = 0.75 in our
experiments. Hence, the kernel of the two graph is defined as

k(G1,G2) = e−λd(G1,G2). (3)

Computational Complexity. For the feature vector construction,
the time complexity is O(t(n + 2m)), where t is the total time
steps, n is the number of nodes, m is the number of edges. For
the distance calculation, the time complexity is O(nr), where nr
is the number of representative nodes. Therefore, the total time
complexity is O(t(n+2m)+nr), which is much more efficient than
the complexity of exiting graph kernels (O(n3)). This attractive
computational complexity, in turn, makes our method to be the
first practical method for shape analysis of complex models.

3.2.2. Examples: Articulated Shape Retrieval
We evaluate the graph kernel introduced in equation (3) on the

SHREC’14 [51] synthetic dataset, which consists of 300 mesh
models, including 15 human shapes, each having 20 poses. We
focus on the task of measuring the similarity of each model
against all the other models and returning a list of models or-
dered by the similarities with the query model in decreasing se-
quence. The results are evaluated by various statistical methods,
including nearest neighbor (NN), first tier (1-T), second tier (2-
T), and discounted cumulative gain (DCG). A discussion of all
these methods can be found in [52].

We first compute the MDBD of the models from the dataset,
and generate the weighted contact graph. The number of rep-
resentative vertices is selected to be nr = 512, and the radii of
the balls are assigned as the node features of the graphs. Fig-
ure 4 shows some examples and their corresponding MDBDs
in the dataset. We use different graph kernels to compute the
similarities between models, and compare the performance of
our designed graph kernel in 3.2.1 with other graph kernels, in-
cluding Shortest-Path kernel, Weisfeiler-Lehman Subtree Kernel
and Pyramid Match kernel implemented in the Python package
GraKel [53]. Observe that all these graph kernels only work
with discrete node attributes. We round the node attributes to
evenly spaced numbers by round(Nd ×node attribute)/Nd, where
Nd = 25 in this experiment.

The evaluation results are shown in Table 2. In principle, we
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Figure 4: Samples of SHREC’14 [51] (columns 1-5) and their corresponding MDBDs (columns 6-10). Each row shows the same shape of a human model in different
poses. The ball distribution patterns of the MDBD for the same model are similar across different poses.

expect the MDBD subgraphs corresponding to individual fea-
tures of the articulated model to remain the same as the model
goes through different poses. However, even though the approxi-
mation errors in computing MDBD induce some modifications in
the corresponding graphs, our method still possesses an accuracy
that is among the best compared with the accuracies obtained
with other shape descriptors.

Our experiments also show that our graph kernel achieves bet-
ter performance than leading algorithms using various graph ker-
nels for the retrieval of articulated shapes, as described below.
We hypothesize that this is so because most existing kernels sup-
port only discrete node and edge labels of graphs, and do not
rely on geometrically meaningful hierarchical structures. On
the other hand, our kernel exploits the hierarchical structure of
MDBD by assigning weights to the nodes according to their radii.

Moreover, to demonstrate that our method results in consis-
tent results across different geometric representations, we run an-
other experiment on point cloud models. We generate point cloud
models from the corresponding mesh models form SHREC’14
by randomly selecting about 20% of the mesh vertices, and com-
pute the MDBD of these point clouds. For the same shape/human
model, the average similarity of the MDBD graphs computed
from the mesh and point cloud models over the dataset is 0.996.
Table 3 shows the similarity results for articulated shape retrieval
on meshes, point clouds, and an even mixture of the two by using
the proposed graph kernel defined in equation (3).

Method NN 1-T 2-T DCG
HKS-TS [51] 0.467 0.476 0.743 0.729
SIHKS-H [10] 0.427 0.206 0.332 0.562

APT [13] 0.97 0.733 0.927 0.936
Spectral Geom. [54] 0.993 0.832 0.971 0.971

Shortest-Path Kernel [32] 0.323 0.237 0.394 0.580
WL-Subtree Kernel [35] 0.297 0.228 0.373 0.554

Pyramid-Match Kernel [55] 0.290 0.226 0.408 0.564
Our kernel 0.937 0.775 0.953 0.945

Table 2: Evaluation results on SHREC’14 synthetic dataset by nearest neighbor
(NN), first tier (1-T), second tier (2-T), and discounted cumulative gain (DCG).

Data Format NN 1-T 2-T DCG
Mesh 0.937 0.775 0.953 0.945

Point Cloud 0.913 0.751 0.948 0.932
Mixture 0.927 0.723 0.938 0.926

Table 3: Shape retrieval performance of our graph kernel used for the
graphs of MDBD calculated from three kinds of dataset: meshes, point
clouds, and even mixture of meshes and point clouds.

6



3.3. Substructure Matching

The methods developed for shape retrieval and classification
extract global shape features from 3D models. However, engi-
neers are often interested in local shape features of 3D models
because the functionalities of a mechanical part are usually re-
vealed by substructure features. For example, in engineering de-
sign, one might seek to identify high-level machining or design
features (e.g. slots, holes and ribs) in a database for design reuse
[56, 57], cost estimation [58], manufacturing process reuse [59],
manufacturability analysis [60]. In the context of graph-based
shape analysis, the identification of engineering relevant features
involves graph substructure matching.

Previous shape analysis methods have been developed indi-
vidually for meshes, point clouds, or volumetric representations,
but they do not employ an intrinsic partitioning strategy of the
domain that is needed to compare the similarity between graph
sub-structures. There are some existing methods that could ex-
tract node features, such as Heat Kernel Signature-based methods
that can capture surface curvature, but methods that group graph
nodes into a feature-relevant substructure of the 3D model have
not been documented.

3.3.1. Neighborhood Subgraph Matching
We observe that feature-based object segmentation can be re-

cast into a graph segmentation problem by using the maximal
disjoint ball decomposition. The MDBD captures the geomet-
ric and topological information of the 3D model via the contact
graph and the radii of the associated maximal balls. Moreover,
the larger balls capture the larger/global features of the domain,
while the smaller balls encapsulate the geometric details, as can
be seen for example in Figure 4. From a graph perspective, the
structural features reside in the subgraphs. While there are nu-
merous ways to divide a graph into subgraphs, we resort to neigh-
borhood subgraphs 2.2 due to their attractive properties, includ-
ing the fact that they capture the ‘local’ geometric information of
the protruding features.

Given two domains, Ω1 and Ω2, we find their most similar
sub-structures by exploring their neighborhood subgraphs, and
by finding the subgraph pairs that have the highest value of sim-
ilarity according to the graph kernel defined in equation (3). The
process is summarized in the pseudo-code shown in Algorithm 1,
where G[N(vi,K)] is the subgraph of G induces by neighborhood
N(vi,K)

Algorithm 1: Find the most similar neighborhood sub-
graphs of two MDBD graphs G1 and G2

Input: Two graphs G1(V1, E1), G2(V2, E2), range K
Output: The most similar neighborhood subgraph pairs

(S 1, S 2)
Initialization
for i← 1 to |V1| do

for j← 1 to |V2| do
similar matrix[i,j]
← k(G1[N1(vi,K)],G2[N2(v j,K)])

end
end
(i, j)← argmax(similar matrix)
(S 1, S 2)← (G1[N1(vi,K)],G2[N2(v j,K)])

3.3.2. Examples: Substructure Matching
The hierarchical nature of MDBD induces a meaningful and

convenient partition strategy of the original domain in terms of
subgraphs. In practice, engineering features can be abstracted
by MDBD subgraphs and, therefore, their similarity can be mea-
sured via graph kernels. The scale of the features that we want
to look at can be easily tweaked by changing the neighbor-
hood range K of the neighborhood subgraph. Since substructure
matching is an area that has been hardly explored before in this
context, there is no benchmark dataset for evaluation and com-
parison. We employ neighborhood subgraph matching with the
graph kernel defined in 3.2.1 to show how to use the MDBD in-
duced subgraph matching to perform the substructure matching
for articulated models. In our experiments we chose K = 2, and
the number of representative nodes nr = 10.

In Figure 5, we show the results of sub-structure matching for
a group of articulated human models from SHREC’14 dataset
represented as meshes and point clouds. For the human mod-
els in Figure 5 (a), we first identify the neighborhood subgraphs
that correspond to the head, an arm, and a calf, respectively. We
follow that by searching the graphs of the other human mod-
els to identify the most similar neighborhood subgraphs of their
MDBDs against the query subgraphs. The figure illustrates the
effectiveness of our method in performing substructure matching
on articulated models. Note the discrepancies for the matched
subgraphs for meshes and point clouds, which originates from
the reflection invariance of MDBD. In other words, correctly pro-
cessing the symmetries, such as those arising between the left and
right arm, would require additional information - see also [61].

Some DNNs, such as DensePose [25], can partition the do-
main and recognize individual parts of human bodies. However,
these methods rely on the concept of localized shape landmarks,
which does not easily generalize to arbitrary shapes. On the other
hand, Figure 6 presents the results of performing sub-structure
matching with our method on other similar models from COSEG
[62] and MCB [63] datasets. It clearly illustrates the fact that our
method can detect similar parts among models belonging to the
same shape class.

4. Conclusions

In this paper, we showed that powerful shape analysis methods
can be developed by exploiting the geometric and topological
information stored in the contact graph induced by the maximal
disjoint ball decomposition of a domain. Because MDBD only
relies on distance computations, which must be supported by any
and all valid geometric representations, it can be used to develop
a uniform shape analysis framework that can handle any valid 3D
geometric models.

First, we showed that the contact graph of the maximal dis-
joint ball decomposition can be directly used for shape classifi-
cation by using graph CNNs. By implementing several leading
graph convolutions within a simple neural network architecture,
we showed that the resulting graph CNNs achieve comparable
classification accuracy with that of other neural networks, while
using a significantly lower number of parameters. This, in turn,
will directly impact the associated computational resources, in-
cluding a reduction of the number of training cases required and
of the demands on the complexity of the required hardware. Con-
sequently, the MDBD graphs could drive a lightweight AI mod-
ule for 3D shape recognition, such as those that would run on
smart devices.

However, shape classification requires only a global measure
of similarity and the existing methods cannot be immediately
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Figure 5: Sub-structure matching for articulated models represented as meshes and point clouds. Models in (a) highlight the substructures correspond-
ing to the head, arm and lower leg. Our method finds the most similar substructures of articulated models in (b) that are matching with the target
structures in (a). Observe the consistency of the results for meshes and point clouds.

Figure 6: Sub-structure matching among similar models. Models in (a) contain the target substructures; images (b) display the matching substructures for objects in the
database. The first four rows of models, namely the irons, four leg animals, candelabra, and lamps, are from COSEG [62]. The last row of models, i.e., the chain drives,
are from MCB [63].
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used to perform retrieval of articulated shapes or substructure
matching/feature recognition that need local similarity measures.
On the other hand, the MDBD contact graph encodes the sub-
structure local information in a hierarchical data structure. Thus,
geometric features can be detected by neighborhood subgraphs,
so their similarity can be measured via graph kernels. To this
end, we proposed a new graph kernel based on random walks
that exploits the properties of MDBD. The linear time complex-
ity of our kernel makes it much more appealing for shape analysis
than existing graph kernels, whose time complexities are usually
quadratic or higher. Furthermore, we showed that the versatile
form of the MDBD graph provides both global and local features
for shape classification, retrieval, and segmentation for any and
all valid geometric representations, which is a unique and novel
feature among the existing shape descriptors. Specifically, we
showed that the proposed graph kernel achieves competitive re-
sults for articulated shape retrieval and substructure matching on
meshes, point clouds, and an even mixture of the two.

The work described in this paper has not yet taken advantage
of the full capabilities of graph analysis tools for substructure
matching because we only used neighborhood subgraphs. This
type of subgraphs form an efficient yet simple method for graph
segmentation, but limits the types of substructures or features that
can be recognized. For example, these neighborhood graphs can
be used to detect convex features, such as protrusion features, but
are not as effective at detecting concave features such as holes.
One way to extend the utility of the neighborhood graphs to con-
cave features is to observe that the concave features of a model
generate convex features of its complement. This, in turn, would
immediately extend the applicability of these neighborhood sub-
graphs to concave features. However, a detailed treatment of the
associated issues and of alternative graph-based methods is be-
yond the scope of this paper.
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