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Abstract

Designing the 3D layout of interconnected systems (SPI2), which is a ubiquitous task in engineered systems, is of
crucial importance. Intuitively, it can be thought of as the simultaneous placement of (typically rigid) components and
subsystems, as well as the design of the routing of (typically deformable) interconnects between these components and
subsystems. However, obtaining solutions that meet the design, manufacturing, and life-cycle constraints is extremely
challenging due to highly complex and non-linear interactions between geometries, the multi-physics environment in which
the systems participate, the intricate mix of rigid and deformable geometry as well as the difficult manufacturing and life-
cycle constraints. Currently, this design task heavily relies on human interaction even though the complexity of searching
the design space of most practical problems rapidly exceeds human abilities.

In this work, we take advantage of high-performance hierarchical geometric representations and automatic differentiation
to simultaneously optimize the packing and routing of complex engineered systems, while completely relaxing the constraints
on the complexity of the solid shapes that can be handled and enable intricate yet functionally meaningful objective
functions. Moreover, we show that by simultaneously optimizing the packing volume as well as the routing lengths we
produce tighter packing and routing designs than by focusing on the bounding volume alone. We show that our proposed
approach has a number of significant advantages and offers a highly parallelizable, more integrated solution for complex SPI2
designs, leading to faster development cycles with fewer iterations, and better system complexity management. Moreover,
we show that our formulation can handle complex cost functions in the optimization, such as manufacturing and life-cycle
constraints, thus paving the way for significant advancements in engineering novel complex interconnected systems.

Keywords: 3D spatial packaging of Interconnected Systems with Physical Interactions, Maximal Disjoint Ball
Decomposition

1. Introduction process evaluates most of the downstream constraints, such
as those related to manufacturing and product life-cycle,
late in detailed design, which often results in significant in-
creases in the number of design iterations, and consequently
causes schedule delays and increases product development
costs. Hence, novel automated design optimization meth-
ods that take into consideration a larger set of constraints
up-front, early in conceptual design would make the design
process more efficient and result in final designs that not
only perform significantly better, but also have remarkably
lower total costs. For example, simultaneously considering
the optimal component placement, routing, and physical

The current practice in designing interconnected 3D sys-
tems operating in multi-physical environments follows a
largely manual process that depends heavily on human ex-
perience. This traditional design methodology, which in-
volves spatial placement of interconnected components and
subsystems, interconnect routing, and physics-based per-
formance evaluation are all complex and highly non-linear
tasks that quickly overwhelm human cognitive capacities,
especially as system complexity reaches moderate levels.
Furthermore, effectively optimizing 3D Spatial Packaging

of Interconnected Systems with Physics Interactions (SPI2)
requires a comprehensive understanding of various system
requirements, including manufacturing, assembly, testing,
operation, and maintenance [11, 2} [3].

It is a common industrial practice for engineers to ap-
proach these problems by modifying existing system designs
to fit new requirements. Nevertheless, while common, such
a practice is not only labor-intensive but also frequently re-
sults in sub-optimal solutions in terms of size, weight, sys-
tem performance, and reliability. In addition, this common
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behavior of complex engineered systems that are subject to
functional, manufacturing, and life-cycle constraints would
have a significant effect not only on the quality of the de-
signs but also on the associated product development costs
and schedule.

Various algorithms have focused on the challenges of
packing and routing separately [4, 5]. However, the unique
demands of SPI2 designs call for a simultaneous solution to
spatial packing/layout, routing, and functional evaluation.
This concurrent approach has received relatively little at-
tention in the field largely due to its inherent theoretical and
computational complexity. A significant factor influencing
this complexity in SPI2 designs is that both packing and
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routing problems are each NP-hard problems [6]. Conse-
quently, as the scale and complexity of these systems grow,
not only does the number of potential solutions increase ex-
ponentially, but the associated computational cost explodes.
Additionally, the complex and non-linear characteristics of
the packing and routing problem increase the likelihood of
the optimizer encountering local optima, a challenge that is
less prevalent when tackling the components of the packag-
ing problem — packing and routing — as separate tasks. This
complexity amplifies the challenge of effectively addressing
the spatial packaging problem, highlighting the need for in-
novative approaches in this field.

Recently, some algorithms have been proposed to auto-
mate SPI2 designs for both 2D [7], 8, @, [10] and 3D [I1} 12]
systems. The formulation of these algorithms, focused on
minimizing the bounding box volume and on considering
limited physical interactions within the system, overlooks
the crucial aspect of minimizing the lengths of the intercon-
nects and restrict the geometries of all shapes involved to
cubic shapes. In turn, this simplification leads to subopti-
mal solutions, although these simplifications allow the use of
analytical sensitivities in the optimization problem. At the
same time, the existing algorithms use the smallest enclos-
ing spheres of each component in their collision detection,
which overestimates potential collisions and unnecessarily
restricts the design space of potential solutions.

In this paper, we introduce a SPI2 design automa-
tion algorithm that leverages the strengths of a new
high-performance hierarchical geometric representation,
specifically the Maximal Disjoint Ball Decomposition
(MDBD)[13], and the recent advances in automatic differ-
entiation. As a result, we effectively remove the current
limitations on geometric complexity, enabling the creation
of complex yet functionally meaningful objective functions
of practical importance. Moreover, by using automatic dif-
ferentiators, we can optimize both the packing volume and
the routing lengths of systems functioning within multi-
physics environments. Our proposed approach offers several
additional significant benefits, such as being highly paral-
lelizable, providing an integrated and scalable solution for
complex SPI2 designs, and leading to faster development cy-
cles with reduced iterations and enhanced management of
system complexities. Additionally, our integrated method
for 3D packing and routing of complex geometries allows
for the consideration of intricate cost functions in the op-
timization process, such as critical manufacturing and life-
cycle constraints. In other words, our proposed approach
lays the groundwork for substantial progress in the research
and practice of complex engineered interconnected systems.

2. Background

The design problems of 3D packing and interconnect/pipe
routing have been the subject of extensive but sepa-
rate investigations, reflecting their significant relevance
across multiple industries, including transportation[I4] [15],
manufacturing[I6, 17, B], and robotic path planning[I8]
19, 20], among others[2T, 22, 23] 24, 25]. While nu-
merous studies have focused on addressing 3D packing
and interconnect/pipe routing design as separate challenges
[, 26, 27, 28] 291 B0, BTl B2] B3], complex engineering sys-
tems, such as aircraft engines with their hundreds of inter-
connected components, necessitate an integrated approach

to solve 3D packing and interconnect routing designs con-
currently.

A few prior studies considered the integrated packing and
routing design. For instance, the authors in [34] employed a
simulated annealing-based algorithm for packing and rout-
ing design, optimizing a weighted objective function that
includes component packaging density, total routing length,
and overall system volume. To circumvent infeasible solu-
tions, collision constraints were integrated into the main
objective function as a penalty term. The effectiveness of
this method was showcased in a case study involving a heat
pump, where the algorithm achieved a reduction of approx-
imately 40 % in interconnect lengths compared to the best
existing methods, albeit with a slight compromise on vol-
ume optimization. However, the study’s reliance on simpli-
fied component geometries, such as prisms and cylinders,
to model the heat pump’s parts limits its applicability to a
broader range of real-world scenarios. In another study by
[35], the authors proposed a mixed integer linear program
tailored to packing problems of rectangular objects aligned
with principal axes, allowing only 90-degree rotations. This
study incorporates an innovative area estimation for routing
flexible connections between objects, utilizing a branch &
bound strategy combined with a linear relaxation for wiring
area estimation to address the optimization problem. The
algorithm’s strength lies in its ability to generate multiple
solutions for each scenario, providing flexibility to select an
optimal solution based on criteria beyond those initially in-
corporated into the optimization process. However, this
flexibility is offset by a marked increase in computational
demand, especially in scenarios involving routing, leading
to significantly higher computational costs. Additionally,
[2] introduced a Constraint Programming (CP) based al-
gorithm for 3D packing and interconnect design, utilizing
basic geometric forms (like spheres, cylinders, or rectangu-
lar prisms) for components and uniform-diameter cylinder
chains for interconnects. The algorithm focuses on opti-
mizing component positions and orientations, as well as the
shapes and placements of interconnect cylinders, aiming to
minimize both packing volume and interconnect lengths.
However, despite these advancements in simultaneous pack-
ing and interconnect design, these approaches generally
cater to simpler geometries. More critically, they often over-
look the physical interactions between components, a fun-
damental factor in the design of engineering systems [36].

Recently, various algorithms have been developed that
not only address packing and routing but also integrate
physical aspects into the optimization process. For instance,
in [§], a gradient-based optimization algorithm was de-
veloped specifically for packaging electro-thermal systems.
This algorithm aims to minimize the system’s bounding vol-
ume, which contains 2D geometries, while also accounting
for thermal conduction and fluid pressure loss. In another
study, [9] introduced a two-stage design automation ap-
proach that methodically enumerates and describes feasi-
ble topological layouts for a 2D fluid-thermal system. It
then optimizes each layout using a gradient-based design
optimization procedure, but with a focus on the physics-
based performance of the system. These studies have made
notable progress in simultaneously considering packing and
interconnect design, along with some physical aspects of the
system. However, a major common limitation is the restric-
tion to 2D simple geometries, which limits their utility in
addressing real-world design problems.



Very recently, [12] presented a gradient-based algorithm
for simultaneous packing and routing of 3D systems and
uses analytical sensitivities. This algorithm not only min-
imizes the bounding box volume but also integrates multi-
physics capabilities, such as thermal and hydraulic models,
while considering non-interference geometric constraints.
Notably, their results show a reduction of the bounding box
volume by approximately 90% compared to the start config-
urations of the optimization cycles. It is important to note
that in this approach, every component is assumed to be a
3D cube, and the objective function only contains terms as-
sociated with the design volume and the thermal/hydraulic
physical phenomena, while ignoring the lengths of the inter-
connects. Clearly, these simplifying assumptions were made
to be able to derive analytical sensitivities, but these same
assumptions produce in turn suboptimal solutions. Addi-
tionally, the method overestimates the collision predicates
because it approximates the distance between components
using the distance between their smallest enclosing spheres.

3. Contributions

In this work, we introduce a pioneering SPI2 design
automation algorithm that capitalizes on the strengths
of high-performance hierarchical geometric representations,
specifically of the Maximal Disjoint Ball Decomposition
(MDBD) [13], complemented by the use of automatic differ-
entiators. The key contributions of our work are as follows.

1. By employing MDBD, our algorithm can efficiently and
accurately compute the collisions between the complex
3D geometries.

2. We leverage automatic differentiation, which allows us
not only to relax the constraints on the geometric com-
plexity, but also to consider sophisticated and func-
tionally relevant terms in the objective function, such
as those capturing manufacturing and life-cycle con-
straints. This, in turn, affords for the first time the
formulation of SPI2 design problems of practical com-
plexities within an optimization framework. We note
that the inclusion of manufacturing and life-cycle con-
straints is outside the scope of this paper and will be
detailed separately.

3. Unlike traditional methods that focus predominantly
on minimizing the bounding volume, our algorithm op-
timizes both the packaging volume and the routing
lengths. This dual-focus approach results in more ef-
ficient design solutions with tighter packaging and im-
proved functionality.

4. Our proposed method inherits the parallelization and
scalability proprieties of sphere-sphere distance com-
putations [37, 38, [39, [40], automatic differentiation
[41], [42] 43], and physics solvers [44], 45] [46], and there-
fore supports parallel and scalable implementations of
our SPI2 approach. In turn, our formulation has the
potential to accelerate the development process and im-
prove the overall management of system complexities.

The remainder of this article is structured as follows:
Section 4] summarizes the key properties and generation of
MDBD, and provides a detailed discussion on the formu-
lation of the simultaneous component packing and routing
design optimization problem. Then, Section [5| showcases
the results derived from various numerical case studies con-
ducted using our proposed optimization methodology. The

article concludes with Section [6 where we summarize our
findings and outline potential avenues for future research.

4. Method

4.1. Structure of the System Configuration Space

In this section, we introduce a generalized mathematical
framework for the configuration space of the interconnected
system. As we can see below, this configuration space,
which is the Cartesian product of the individual configu-
ration spaces corresponding to the rigid components and
the flexible interconnects, is itself a Lie group, and hence a
differentiable manifold. This provides the necessary under-
lying differentiability framework required by gradient-based
optimization methods.

Components are assumed to be n-dimensional r-sets [47],
which are compact (i.e., bounded and closed) regular semi-
analytic subsets of the Euclidean n-space R™. Every r-set
A within an n-dimensional workspace W = R™ is defined in
a Cartesian frame F4 attached to A. Similarly, a Cartesian
frame Fyy is attached to workspace W. Thus, Fyy and F4
are the associated global and local coordinate frames, and
therefore the configuration of A in W is the position and
orientation of F4 relative to Fyy. The set of all possible
configurations of A represents its configuration space Cgu,
which can be described by a list of real parameters corre-
sponding to the rotation R € SO(n) and translation t € R™.
The configuration space C4 := SE(n) = SO(n) x R™ inherits
the Lie group structure of the motion group SE(n), since the
special orthogonal group SO(n) and R™ are both Lie groups.
Importantly, C4 := SE(n) is a differentiable manifold since,
for every open set of elements of SE(n), one can define a 1-1
map onto an open set of R”. A common way to represent el-
ements of the speciaﬂ orthogonal group of rotations SO(n)
is through n x n orthogonal rotation matriceg”, and a com-
mon parametrization of these elements in 3-dimensions is
achieved via Euler angles [52], which have been generalized
to higher dimensions.

For a given rotation R € SO(n) and translation t € R",
the relationship between the coordinates of a point p €
A between the two reference frames, F'4 and Fjy, can be
expressed as:

pw = Rpa +1t, (1)

which treats translation differently (as an addition) from
rotation (as a multiplication). As usual, the homogeneous
coordinates can provide the unifying framework that allows
any rigid body transformation as well as more general affine
transformations to be treated as matrix multiplications.

Thus, a rigid body transformation T' € SE(n) is defined
as:

T:{Hi H:Resom),tem}. )

and therefore equation becomes:

Py = TP} (3)

1This adjective reflects the fact that we exclude the orthogonal
matrices with negative determinants.

2Another common representation of rotations is provided by the
quaternion algebra [48] discovered in 1866 by Hamilton [49]. In fact,
rigid body transformations can be represented as unit dual quaternions
[50], which were discovered by Clifford in 1882 [51].



where p),, and p’; are the homogeneous versions of vectors
pw and pa.

Our r-sets are 3-dimensional pointsets embedded in the
3-dimensional Euclidean space R3, and SE(3) is a differen-
tiable manifold and a Lie group. As a result, this Lie group
structure supports the formulation of gradient-based opti-
mizations involving this particular r-set. Thus, for a set of
m rigid r-sets embedded in R?, each such r-set will generate
a separate 6-dimensional configuration space. Collectively,
the system of m r-sets will have 6m degrees of freedom cor-
responding to a combined configuration space

C=C xCy X ...xXCp, (4)

where x denotes the Cartesian product and each C; has
the structure of SE(3). Based on Theorem 6.4, p82, from
[53], the Cartesian product of 2 Lie groups is a Lie group.
Hence, the combined configuration space C is a differentiable
manifold and supports gradient-based optimizations.

While the rigid r-sets described above have exactly 6 de-
grees of freedom in 3D, the interconnects are flexible com-
ponents with generally infinitely many degrees of freedom,
which makes the problem intractable. However, by as-
suming some parametrization of these interconnects that
bounds the corresponding number of degrees of freedom,
we can formulate the combined configuration space of the
rigid r-sets as well as the flexible but parameterized inter-
connects. For example, one such parametrization inspired
by practical applications can be expressed in terms of gener-
alized cylinders generated by d disks of potentially different
radii placed along the curved center axis and perpendic-
ular to the center axis, and some predefined interpolation
between successive disks. For such an interconnect, the con-
figuration space defined by the centers of the disks and their
radii is (R® x R)?, whic is a Lie group.

With this parametrization in place, the combined con-
figuration space of the interconnected system of m rigid
components and p interconnects becomes:

Csystem = Cl X ... X Cm X (R3 X R)dpl (5)

which is also a Lie group and therefore a differentiable man-
ifold. An element of Cyysiem specifies the configurations of
all rigid components of the system, all the disks of all the
interconnects, as well as their radii relative to the reference
coordinate frame.

4.2. Problem Formulation

The SPI2 optimization problem can generally be formu-
lated in compact form as the constrained minimization:

min f(x)

x
subject to:
8Bcollision S Oa
gphysics S 07

3We note that this formulation of the configuration space of an
interconnect defined this way requires additional assumptions of how
one transitions between sections of the same interconnect that have
different radii. One initial simplifying formulation can assume that
each interconnect has a constant cross-section, in which case the cor-
responding configuration space would be (R3)¢ x R.

where the objective f(x) contains functional terms, and the
constraints g are vector functions. In this paper, our objec-
tive function contains terms corresponding to the packing
volume and the total length of the interconnects, and, there-
fore,

f(X) = wva + wrfr (7)

Here, w, and w, represent the weights attributed to the
dual objectives of minimizing packing volume and routing
length, respectively. Additionally, gcotision a0d gphysics are
the constraints within the optimization framework ensuring
that in the final solution the components and the intercon-
nects do not collide and meet the physical requirements. In
this section, we offer an in-depth discussion of the geometric
representations and the formulation of the gradient-based
optimization process, including the specific design variables,
objective functions, and constraints that are critical for suc-
cessfully navigating the challenges of simultaneous packing
and routing in the SPI2 design domain.

4.2.1. Geometric Representation

A crucial aspect of the computational approach must in-
volve the selection of an appropriate geometric represen-
tation that allows efficient computations of the terms that
form the objective function.

There have been a number of geometric representations
used in existing approaches focused on 3D packing problem
alone, including surface meshes [54, [55], voxels [5l 28], and
simple primitives [56} 12]. However, all existing algorithms
either are not gradient-based, such as genetic algorithms
and simulated annealing, or use blocks and cylinders as ge-
ometries. Moreover, the existing approaches do not scale
up well.

One recent approach to packing that does achieve im-
pressive performance on a simplified version of the packing
problem for additive manufacturing [B] uses indicator func-
tions defined over voxels in conjunction with Fast Fourier
Transforms (FFT), and employs a subset of the computa-
tional machinery discussed in [57, [58] [59]. The packing is
defined as a search for optimal configurations and is accel-
erated by FFT, coupled with a translational disassembly
based on a flood-fill algorithm followed by a repeated re-
assembly process. Indicator functions are not differentiable,
which is why bump functions [58] could be used instead to
obtain the required differentiability. Note that this formu-
lation addresses the specific problem of packing 3D shapes
inside a known 3D printing volume.

In this paper, we adopt the Maximal Disjoint Ball De-
composition (MDBD) [I3], as illustrated in Figure [I} as a
proxy geometric representation of 3D geometries involved in
the SPI2 design problem. This choice was driven by several
different factors. First, MDBD is a genuine proxy geomet-
ric representation that further allows the consideration of
input geometries using any valid geometric representation.
Second, as a union of hierarchically placed maximal dis-
joint balls, it supports efficient distance queries [60, 61] and
massive parallelization on the GPU. Third, complex geo-
metric components can be represented at various levels of
details that can be established at run time [57]. Finally,
complex geometric components can be easily represented
with collections of simple and rotation-invariant spherical
primitives whose definitions are very similar across spaces
of different dimensions. A possible implication of the latter



(a) (b)

Figure 1: (a) The boundary representation of a cube component (r-set)
and its MDBD representation (b).

property will be discussed in section A detailed ex-
planation of MDBD computation can be found in Section
It is important to note that, similar to other geometric
representations, solving boundary value problems directly
on the MDBD has not yet been formulated. However, an
analysis workflow and other possible strategies are discussed
below.

In what follows, a truncated MDBD model of a shape A
consisting of ¢ spheres is denoted by A = U§:1 Si.

A suitable representation of the geometry of the intercon-
nects is also essential. As described in section one can
conceptualize a large class of interconnects as generalized
cylinders generated by circular cross-sections swept along a
curve generator. This in turn would require the implemen-
tation of an efficient distance-to-curve algorithm - a curve
that is controlled by a prescribed set of design variables de-
pending on the curve representation, and a radius function
defined along the curve. Without loss of conceptual general-
ity, in this work, we assume that the circular cross-sections
for a given interconnect have equal radii and that the gener-
ators are comprised of k piecewise linear curves connecting
d = k 4+ 1 nodes. Hence, each interconnect will be defined
by 3d + 1 degrees of freedom, where the additional degree
of freedom corresponds to the value of the radius. Note
that the first and the last nodes in the node sequence are
connected to the respective components connected by the
interconnect, and therefore the number of free degrees of
freedom is 3(d —2) since the radius is assumed to be known.

4.2.2. Design Variables

In our optimization framework, the design variables con-
sist of the parameters corresponding to the translations and
rotations applied to the components, as well as translations
applied to the routing nodes.

Given a specific component A;, its MDBD spheres can be
considered to be rigidly attached to each other. Hence the
position and orientation of A; in Fyy can be traced based on
the position and orientation of the local frame F'z, attached
to A;. In this paper, we use the Euler angles to parameterize
rotations and position vectors to trace the position of the
origin of Fy,. Consequently, equation can be used to
convert any point from Fg, to Fyy.

The location of each piecewise linear routing is deter-
mined in space by the location of its d — 2 unconstrained
nodes. Thus, for m components and p interconnects, the
design variables for our problem can be written as

x:={tg,, b4, Ra,, R4, . T, T} (8)

m

where each matrix 7; contains the translation vectors for
d — 2 nodes. Thus, the total number of variables is 6m +
3p(d — 2).

4.2.8. Packing Volume

The system’s packing volume, denoted by f,(x) in equa-
tion , is defined here as the smallest axis-aligned box en-
closing all components and interconnects of the entire sys-
tem determined by the design variables x from equation
(8). Thus, assuming that each MDBD contains ¢ spheres,
we have

3
0 =1] [max(iel{lffitx }(||pr0jma (co)ll + i),
a=1 2+

max
i€{l,p}je{2,d—1}
- mln(ieg}pm}(l Iproj, (ci)|| — i),
min  (||proj, (ns:)|| —d;i))] (9)

i€{l,p}
je{2,d—1}

(|lproj,,, (nji)[| + dji))

where c; contains the coordinates of the center of sphere s;
of radius 7;; n;; represents the coordinates of free node j of
interconnect i having a cross-sectional radius dj;; proj, (a)
is the projection of a vector a along the three coordinate
axes x1, T2, and xz of the global frame; and || - || is the
Euclidean Ly norm.

4.2.4. Length of Interconnects

Additionally, our objective function incorporates the total
length of the interconnects, denoted by f,. in equation @,
which is calculated as the aggregate length of all cylinders
within the system. Thus, the total length of the intercon-
nects is determined by:

p k+1

fr(x) = Z Z [y — nyil| (10)

i=1 j=1

4.2.5. Collision Detection

During optimization, collisions may occur between two
components, between components and interconnects, or be-
tween two interconnects. The detection of collisions be-
tween any two parts within the system is typically achieved
by calculating the minimum signed distance between them,
where a negative distance indicates a collision.

A significant advantage of employing MDBD lies in its
ability to facilitate both efficient and accurate distance cal-
culations. This efficiency is due to the ability to deter-
mine the distance between MDBD models by calculating
the distance between the spheres that represent these mod-
els. Thus, for a system composed of a set of m components
and p interconnects , the overall minimum distance for the
system becomes:

d = [minmind(s;, s;), minmind(s;, R;),

m  m m p
minmind(R;,R;)] (11)
PP



where d(s;,s;), d(si,R;), and d(R;,R;) are distances be-
tween two spheres, a sphere and an interconnect, or between
two interconnects, respectively. It is important to highlight
that for the distance calculations in equation we assume
that each interconnect is a collection of cylinders of con-
stant thicknesses, as described above. Deviating from this
assumption necessitates the adoption of suitable distance
computation methods, such as those detailed in [62, 63} [64].

4.2.6. Physical Interactions

The physical interactions within SPI2 design as formu-
lated here are not confined to any single type of physical in-
teraction. In fact, one can include any physical interaction
for which an appropriate cost term can be included in the
formulation outlined in the equation @ Furthermore, var-
ious solvers can be employed to model the system’s physics,
including finite element analysis (FEA), boundary element
method (BEM) [65], or analytical approaches. In this work,
we chose to model the thermal interactions between com-
ponents as an example. However, one can similarly include
other types of physical interactions or incorporate the in-
terconnects as well.

The initial step in modeling thermal interactions through
finite element analysis (FEA) involves projecting the
MDBD components onto a spatial discretization. For a
given sphere s centered at ¢ and having a radius r, and
a voxel element centered at v, the signed distance function
that quantifies the separation between the sphere and the
mesh element is calculated as follows:

d(s,v) =llc=v|la—r (12)

The signed distance may be negative, zero, or positive,
where a negative value indicates that the sphere intersects
the voxel element. Given that the density of each element
ranges from 0 to 1, we employ a Logistic function to map
the signed distance onto the interval [0, 1]. This function ap-
proaches 1 as the overlap increases and approaches 0 with
the positivity of dgy (s, v), signifying disjointness. The spe-
cific Logistic function utilized in our model is:

1

Y(S,’U) - 1+ £20d(s,v)

(13)

We apply equations and (|13) iteratively across all
spheres in the system and all voxel elements to determine
the necessary density values for our FEA analysis.

We further assume that the system’s thermal model is in
a steady-state condition, with uniform thermal conductivity
across all components. To derive the temperature distribu-
tion, we employ the weak form of the differential equations
relevant to the FEA of the discretized domain, framing it
as a linear problem:

KT=P (14)

Here, T represents the discretized field of temperature so-
lutions, and K is the global stiffness matrix, which is as-
sembled from the stiffness matrices of individual elements,
denoted as k¢;. Additionally, P signifies the global load vec-
tor, comprised of the load vectors of individual elements,

Per- We use the following definitions for ke; and pe;:

ket = (Pmin + (1 = pmin)pg) { / BTkB dQ,

Qe

hNNTdafzh}
o

DPel = pi/ QN e +/ Wl enoN dOSY
Qe o

Here, p. represents the elemental density after projecting
the entire layout, with a serving as a penalization parame-
ter designed to reduce intermediate densities between 1 and
0, thereby minimizing the gray area between solid and void
regions; N and B correspond to the element shape func-
tion and its gradient, respectively; x denotes the matrix of
thermal conduction coefficients; @ is the heat flux per unit
volume within the domain; T,,, is the temperature of the
convecting fluid along the 02;, boundary segment; h is the
convection coefficient; p4 is the elemental density after pro-
jecting the A" component, to account for its specific heat
generation; P, is employed within the stiffness matrix to
prevent numerical instability that may arise from regions
with zero density. Upon determining the thermal field, the
temperature at the location of the largest sphere within
each component is taken to represent the component’s cor-
responding temperature.

4.2.7. Optimization Solver

Now that we have all the constituents required to solve
our SPI2 design problem, we can proceed with the solu-
tion procedure. To solve the constraint optimization prob-
lem formulated in Equation [6 one can use traditional ap-
proaches such as the Augmented Lagrangian Methods im-
plemented in known large-scale solvers. However, in our
prototype implementation, we transformed the constrained
optimization into an unconstrained formulation to simplify
the integration with automatic differentiators by adding the
constraints as weighted terms of the objective function:

m)in f=wyfo +wpfr +wWaga + WARIAR + WRYR + WTGT

(15)
where ws are the weights assigned to each specific term and

1

ga(@) = min,, min,, d(s;, s;)
1

gar(r) = min,, min, d(s;, R;)

1 (16)
9r() = min, min, d(R;, R;)

1
S Ak S S—

where T},4, is the maximum allowable temperature for
each component, while T,omponents is the average tempera-
ture of each component as determined through Finite Ele-
ment Analysis (FEA).

A key aspect of our gradient-based optimization approach
is the use of a gradient-based optimizer known as Adam



Table 1: The default setting for each epoch in the optimization process.

wy [ w, | wa | war [ wr | wr | Step size
Epoch 1 1 1 1 1 1 200 0.005
Epoch 2 2 2 1 1 1 200 0.005
Epoch 3 4 1 2 2 2 100 0.001
Epoch 4 6 1 2 2 2 100 0.0005
Epoch 5 6 2 2 2 2 100 0.0005
Epoch 6 8 2 2 2 2 100 0.0001

[66], which is extensively utilized in the training of deep
learning models. Note that we compute the gradient of the
objective function relative to the design variables by using
established automatic differentiation commonly used in the
training processes of deep learning. This is a key attribute
of our approach that allows us to handle highly complex
geometries as well as practically any other physical terms,
such as manufacturing and life-cycle constraints, into the
objective function. This, however, is outside the scope of
this paper and is the subject of ongoing research. Finally,
our optimization algorithm is implemented using PyTorch,
which also allows us to conveniently leverage GPUs to effi-
ciently solve the optimization problem.

5. Results and Discussion

5.1. Qverall Results

We designed four distinct scenarios to test the efficacy of
our optimization algorithm. The first scenario encompasses
three benchmarks with varying numbers of components and
interconnects, for which optimal solutions are known. Here,
we compare our algorithm’s outcomes with these optimal
solutions. The second scenario illustrates the algorithm’s
performance on examples that range from relatively simple
to complex. In the third scenario, we exclude the intercon-
nect length term from the objective function and assess how
this modification impacts the results compared to the sec-
ond scenario. Lastly, in the fourth scenario, we incorporate
physical interactions into the objective function of the test
cases from the second scenario, examining their influence
on the solutions.

For each example, we compute a truncated MDBD with
100 spheres and the interconnects consist of 6 cylindrical
segments. Moreover, the optimization is conducted over
five epochs, with a cap of 20,000 iterations per epoch. The
weights assigned to each term in the objective function vary,
and an epoch concludes upon reaching the maximum iter-
ation limit or the value of the objective function does not
decrease or if a collision occurs. In the event of a collision,
the system reverts to its pre-collision state and proceeds to
the next epoch. Table [I] outlines the default settings for
each epoch. All the experiments are done with the default
setting unless otherwise indicated.

5.1.1. Benchmarks Cases: Equal Sized Cubes

We defined three benchmarks to evaluate if our proposed
algorithm could achieve optimal packaging results. The first
benchmark involves three equal-sized and interconnected
cubes, as illustrated in Figure whose minimal total vol-
ume is obtained when the three cubes are aligned with mu-
tually parallel and coplanar faces. Note that in this configu-
ration the lengths of the interconnects may not be minimal

so we expect to converge to this solution when the bound-
ing volume is given a much larger priority than that of the
other length-related terms in the loss function. Initially,
the bounding box measures 11.56 x 6.56 x 5.54 units, total-
ing a volume of 420.11 cubic units, with the interconnects
spanning 20.24 units in length. The solution that the op-
timizer converges to with the parameters detailed in Table
is depicted in Figure and shows the capability of the
algorithm to converge to the optimal solution. The bound-
ing box of the optimal configuration measures 5.10 x 1.60 x
1.50 units, or a drastic 97.1% decrease compared to the ini-
tial volume of 12.24 cubic units. It’s important to note the
minor gap between components in Figure is an artifact
of our interconnect placement and the necessity to prevent
collisions between components and interconnects. Further-
more, the total interconnect length of the optimal configu-
ration is reduced to 7.06 units, or a 65.11% reduction. By
changing the weights of the terms in the objective function,
the optimizer will converge to different solutions. For ex-
ample, by weighing the length term the most (w, = 20) in
the first epoch, we converge to the result shown in Figure
In this case, the bounding box dimensions become 3.26
x 3.26 x 1.50 units, yielding a total volume of 15.96 cubic
units, and an interconnect length of 2.36 units. This al-
ternate arrangement of Figure [2c| exhibits a larger volume
but significantly shorter total length of the interconnects
compared to the configuration in Figure 2D

In our second benchmark, we examined a setup involving
four cubic components connected by four interconnects, as
shown in Figure The initial bounding box dimensions
were 14.07 x 9.56 x 6.55 units, with a total volume of 881.03
cubic units and the interconnects measuring 30.88 units in
length. For this benchmark, we set w, = 4 in the first
epoch and w, = 3 in the second epoch. The optimal con-
figuration, depicted in Figure 2¢ illustrates the optimizer’s
ability to converge to the global optimum of the bounding
box volume. The optimized dimensions of the bounding
box are 3.27 x 3.27 x 1.50 units, drastically reducing the
volume to 16.4 cubic units—a 98.13 % decrease. Further-
more, the optimizer reduced the interconnect length to 6.16
units, marking an 80.05 % decrease. In a similar manner
with the first scenario, the final configuration displays mi-
nor gaps between components resulting from the deliberate
choice to avoid collisions. Again, by changing the weights of
the terms in the objective function we reach a different opti-
mal configuration illustrated in Figure This alternative
setup, with bounding box dimensions of 6.91 x 1.59 x 1.50
units and a volume of 16.48 cubic units, closely matches the
volume seen in Figure However, the interconnect length
in Figure 21 is 11.96 units, which is nearly double that of
the configuration shown in Figure

The third benchmark has a higher complexity than that of
the prior ones, with six cubic components that initially rest
on a plane and are linked by eight interconnects, as shown
in Figure The bounding box enclosing these 6 objects
and interconnects has 21.55 x 21.56 x 1.80 units, equating to
a volume of 836.31 cubic units, and an interconnect length
totaling 90.21 units. In this case, we adjusted w, = 25 for
the initial epoch, ensuring the model initially focuses on re-
ducing the system’s volume rather than the length of the
interconnects. The resulting configuration, illustrated in
Figure features bounding box dimensions of 4.88 x 4.61
x 1.50 units, decreasing the volume to 25.66 cubic units or
a 96.93 % reduction. The total interconnect length also saw



a substantial decrease to 13.31 units, which amounts to an
85 % decrease. This configuration appears to be the global
optimum for the bounding box volume, given that it tightly
wraps around the objects. The other alternative solution
possessing a tightly wrapped bounding box, i.e., when the
6 objects are aligned linearly, theoretically has the same
volumeﬂ so this particular problem has at least two min-
ima. Running the optimization with default settings for this
benchmark yields a different configuration shown in Figure
where minimizing interconnect length takes precedence
over volume reduction. The corresponding bounding box is
4.83 x 6.50 x 1.50 units, resulting in a volume of 47.09 cubic
units —nearly double that of Figure However, the total
length of the interconnects is reduced to 9.02 units, which
is significantly less than that of the previous configuration.

Table 2 presents a summary of the bounding box volumes
and interconnect lengths for the three benchmark configu-
rations. Note that by adjusting the weights of the different
terms of the objective function, as specified in Table [I] the
algorithm can be tailored to prioritize different optimization
goals.

5.1.2. Volume and Length of Interconnect Minimization for
Various Geometries

The current leading algorithm for SPI2 design, as de-
tailed in [12] utilizes cubic geometries for system compo-
nents, which limits its applicability to real-world scenarios.
However, with the increase in geometric complexity come
challenges that must be handled differently than the for-
mulation presented in [12], including efficient collision de-
tection between complex models and the lack of analytical
sensitivities. We demonstrate here the performance of our
framework in handling systems with varied complex geome-
tries and for this purpose, we introduce three systems of
growing complexities.

The first system, shown in consists of six cubes and
eight interconnects. To illustrate how the interconnect
thickness affects the solution, we considered both thin as
well as “fat” interconnects, as shown in Figure &
where the thicknesses in Figure[3c|are 80 times greater than
in Figure Both systems start from the same initial con-
figuration from Figure and the optimization was con-
ducted using the parameters detailed in Table [[] Initially,
the system’s bounding box had a volume of 2797.66 cubic
units, and the total interconnect length was 118.11 units.
For the system with thin interconnects, the final configu-
ration in Figure had a volume of 27.50 cubic units and
a total interconnect length of 14.30 units, showing reduc-
tions of approximately 99% in volume and 88% in inter-
connect length. In contrast, the system with thick inter-
connects, shown in Figure had a final volume of 87.7
cubic units and a total interconnect length of 25.8 units,
representing reductions of 96.9% in volume and 79% in in-
terconnect length. The larger volume in the thick intercon-
nect system resulted from the collision constraints that limit
further reductions. These examples demonstrate that our
framework can effectively handle interconnects with varying
thicknesses.

The second system, depicted in Figure [da] includes six
components and nine interconnects, utilizing a variety of

4For 6 unit cubes, the 3 x 2 alignment has a volume of 6 cubic units,
and the 6 x 1 alignment has the same volume, so both configurations
are local minima.

shapes such as prisms, cylinders, and plates. Initially, this
system’s bounding box measured 20.86 x 21.07 x 3.34 units,
yielding a total volume of 1467.99 cubic units and an ini-
tial interconnect length of 107.73 units. Optimization, con-
ducted with parameters detailed in Table [1} resulted in the
final configuration shown in Figure @b} The bounding box
of the resulting configuration was reduced to 3.50 x 3.30 x
1.99 units, with a volume of 22.98 cubic units, and the total
length of the interconnects shortened to 11.20 units, achiev-
ing a volume reduction of 98.43% and a 90% reduction in
the length of the interconnects.

The third system, featuring ten components and fifteen
interconnects, is presented in Figure It incorporates ad-
ditional more complex geometries, including L-shaped and
X-shaped components. The initial bounding box dimen-
sions were 20.66 x 20.09 x 3.34 units, with a total volume
of 1386.30 cubic units and an initial interconnect length of
116.27 units. The optimization converged to the solution
shown in Figure whose bounding box measured 5.43 x
5.32 x 0.99 units, resulting in a volume of 28.59 cubic units
and an interconnect length of 29.58 units. This equates
to a volume reduction of approximately 98% and a 75.4%
reduction in interconnect length.

These outcomes for these systems demonstrate that utiliz-
ing MDBD alongside automatic differentiation enables the
optimizer to efficiently evaluate various objective function
terms, significantly reducing both the bounding box volume
and interconnect lengths for systems with complex geome-
tries. We note that these attributes of our proposed algo-
rithm render it as the first practical approach for optimizing
complex interconnected systems of industrial relevance.

5.1.3. Only Volume Minimization Vs Volume & Length
Minimization

A key distinction between our proposed algorithm and
the current state-of-the-art is the fact that we can include in
the objective function terms representing the interconnect
lengths. To illustrate the impact of incorporating terms cor-
responding to the lengths of the interconnects on achieving
configurations that have better overall functional attributes,
we revisited the examples from Section and excluded
the length term from the objective function. Figure [5| pro-
vides a comparative analysis, showcasing the outcomes with
and without the interconnect length consideration.

In the case of the six-component system, incorporating
both volume and interconnect length into the objective
function yielded a configuration with a total volume of 22.98
cubic units and interconnect length of 11.20 units, as de-
picted in Figure In contrast, omitting the interconnect
length term resulted in a configuration with significantly
longer interconnects, as shown in Figure where the to-
tal volume increased slightly to 23.42 cubic units, and the
interconnect length surged to 35.51 units. This compari-
son underscores the observation that the exclusion of the
interconnect length from the objective function not only
marginally increases the volume but also significantly ex-
pands the interconnect length.

The same effect can be observed for the ten-component
system for which the combined volume and length terms in
the objective function led to a final volume of 28.59 cubic
units and an interconnect length of 29.58 units. This system
is illustrated in Figure However, by excluding the length
term we obtain the configuration shown in Figure hav-



Table 2: The initial and final volume and length of interconnects for each benchmark shown in Figure

Benchmark 1

Benchmark 2

Benchmark 3

Initial (Figure[2a) [ Figure[2b|] Figure [2c|

Initial (Figure [2d) [ Figure [2e[] Figure|2f]

Initial (Figure[2g) [ Figure [2h|] Figure [2i

Volume
Length

420.11
20.24

12.24
7.06

15.94
2.36

881.03
30.88

16.4
6.16

16.48
11.96

836.31
90.21

25.66
13.31

47.09
9.02

(a)

(g)

(b)

(e)

()

(0

(h) ®

Figure 2: Initial and optimized configurations obtained by different optimization parameters for three benchmarks: (a), (b), and (c) show
a system with three components and interconnects, (d), (e), and (f) with four components and interconnects, and (g), (h) and (i) with six

components and eight interconnects.

ing a total volume of 36.20 cubic units and an interconnect
length of 83.92 units.

A possible explanation of this behavior is that the absence
of the length term does not stimulate a repositioning of the
interconnects unless directly affected by the bounding box
volume.

5.1.4. System with Physical Interactions

One of the main objectives in any SPI2 design is to in-
corporate relevant physical interactions in the optimization
formulation. As argued above, our formulation allows the
inclusion of practically any physical interaction whose cost
can be quantified and included in the objective function. To

demonstrate this capability, we introduce a new thermal-
related constraint into the objective function. In this sce-
nario, components are positioned within a prescribed ther-
mal field while exhibiting a unique heat dissipation rate,
and each component has a maximum allowable tempera-
ture that cannot be exceeded.

As discussed in section [£:2.6] a number of solution meth-
ods can be used to simulate the physical behavior, including
traditional FEA — the avenue pursued here, and mesh-free
methods such as [67].

Initial configurations for systems with six and ten com-
ponents are illustrated in Figures [6a] and respectively.
We simulated heat convection on the cooler side at ambient



(2)

(b)

(c)

Figure 3: Initial and final configurations for a system with varying interconnect thicknesses: (a) initial configuration of the system, (b) final
configuration with thin interconnects, and (c) final configuration with thick interconnects.

Table 3: The heat dissipation rates, critical temperature, and final
temperatures for each component in the system shown in Figure @

Heat dissipation | Critical temperature | Final temperature

Component

rates (25) (°C) (°C)
Cube (yellow) 5000 20 4
Prism (blue) 4000 60 17
Flat plate (dark green) 3000 50 11
Prism (red) 3000 70 25
Prism (orange) 2000 70 24
Disk (dark pink) 5000 95 18

Table 4: The heat dissipation rates, critical temperature, and final
temperatures for each component in the system shown in Figure

Heat dissipation | Critical temperature | Final temperature

Component

rates () (°C) (°C)
Cube (yellow) 5000 50 11
Prism (blue) 4000 70 17
Flat plate (dark green) 3000 70 33
Prism (red) 3000 90 37
Prism (orange) 2000 80 22
Disk (dark pink) 5000 60 16
Cylinder (brown) 1000 60 15
L-shaped (green) 3000 70 24
X-shaped (purple) 2000 60 26
Cube (blue) 2000 65 21

temperature, 0 °C, and a warmer face at a steady tempera-
ture of 100 °C, with the remaining boundaries of the enclo-
sure assumed to be thermally insulated. The heat transfer
coefficient on the cooler face boundary was set to 35.80 %

Tables [3] and [4] detail the heat dissipation rates, criti-
cal temperatures, and final temperatures of each compo-
nent for the six- and ten-component systems. The resulting
configurations are depicted in Figures [6D] and [6d] For the
six-component system, the optimizer achieved a volume re-
duction of approximately 95% and a 70% decrease in inter-
connect length. Similarly, for the ten-component system,
volume and interconnect length were reduced by 96% and
71%, respectively. Analyzing the final versus initial configu-
rations for both setups reveals that components with lower
critical temperatures and higher dissipation rates moved
closer to the cooler face. These outcomes affirm that our
algorithm can effectively integrate physical dynamics into
the optimization process, with the potential for extending
to other physical interactions, such as pressure head loss in
interconnects.
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Table 5: Computational times for evaluating each term in the opti-
mization process for systems with six and ten components, expressed

. Second
mn Iteration”
Volume Collision . Gradient
Systems Calculation | Detection FE Analysis Calculation
System 1 (Figure [6a/ 0.0012 0.021 0.35 0.2
System 2 (Figure [6¢ 0.0014 0.031 0.36 0.25

5.2. Time Complexity

Table [B] shows the time per iteration for each calcula-
tion within the optimization process, conducted on a PC
equipped with an Intel Core i7-10750H CPU, 32 GB of
RAM, and an NVIDIA GeForce RTX 2070 Super GPU. The
data highlights the efficiency of volume and collision calcu-
lations, underscoring the advantages of using MDBD. No-
tably, MDBD’s hierarchical representation facilitates rapid
adjustments in detail, further accelerating collision calcu-
lations. Moreover, the current implementation of collision
detection uses brute force to calculate the distance between
the parts in the system. This can be further improved by
employing methods that heavily take advantage of multi-
core GPU units, such as FFT [57, [5]. As can be seen in
Table |5} the computational time increases with the addition
of more components due to a rise in the number of distance
calculations, affecting the time required for collision term
calculations. The time required by FEA is influenced by
the voxel size and in this work we used a uniform voxeliza-
tion of the same size for both examples.

Furthermore, the use of automatic differentiation in our
optimization problem necessitates the maintenance of a
”computational graph” for each design variable, with gra-
dient calculations requiring traversals of this graph. While
potentially more costly than analytical gradient calculations
partly due to the complexity of the graph, automatic differ-
entiation enables the incorporation of complex terms in the
objective function and the handling of complex geometries.
It is important to observe in Table 5] that the computational
time required by automatic differentiation is closely tied to
the number of design variables, with more variables leading
to larger computational graphs. Unsurprisingly, the gradi-
ent calculation time increases with the system size, as more
components contribute to a more complex computational
graph.



(a)

(e)

Figure 4: Initial and optimized configurations for two systems: (a)&(b) a simpler one with six components and nine interconnects, and (c)&(d)
a more complex one with ten components and fifteen interconnects. Figure (e) shows the components used in the systems.

5.3. Entanglements, Dimensional Elevation, and MDBD

Given the interconnected nature of the systems under
consideration, the optimizer may face entanglements gen-
erated by the imposed non-collision constraints, which can
”lock” the optimizer into a suboptimal configuration. For
instance, beginning with the setup in Figure [Ta] the op-
timizer might converge to the state shown in Figure [7D]
where it cannot further reduce the volume or length of the
interconnects without causing a collision between an inter-
connect and the yellow component.

To circumvent such entanglements, we suggest elevat-
ing the dimension of the space in which optimization takes
place. By adding a new dimension to the 3D Euclidean
space of the system, which would turn every 3D point, for

11

example, into a 4D point, we can elevate the dimension
of the functional space to a 4D space. By performing the
optimization in the augmented 4D space rather than the
original 3D space, we can avoid entanglements during the
optimization. The last step upon convergence to an opti-
mal solution, is to project the optimal configuration from
4D back to the original 3D space.

General practical dimensional elevations and reductions
for complex 3D/4D shapes are not known. Here is where
MDBD can provide the critical and missing capability for
dimensional elevation because 3D spheres that are rotation
invariant as well as the nodes defining the piecewise linear
center curve of the interconnects can be easily elevated to
4D and then projected back to 3D — essentially through



(a)

(e)

(d)

Figure 5: Side-by-side comparison showcasing the impact of including both volume and length terms versus only the volume term in the
objective function, across two examples: (a) and (b) depict outcomes with both terms versus only the volume term for the six-component
system, respectively; (c) and (d) illustrate results with both terms versus only the volume term for the ten-component system, respectively.

syntactic operations.

For example, let’s assume an optimization problem for
the system from Figure [7a] in which the objective function
comprises both volume and interconnect length minimiza-
tion. The optimization carried out in the 3D space with
collision constraints leads, as expected, to the solution de-
picted in Figure[7a] However, by employing the dimensional
elevation proposed above, we are able to ”insert” the inter-
connect through the toroidal shape illustrated in Figure
without violating the collision constraints. We note that
the two solutions are visually different and that through
dimensional elevation the optimizer converges to a better
solution.

There are, of course, many open questions raised by the
proposed dimensional elevation that are outside the scope of
this paper. However, we note that the proposed dimensional
elevation technique, which takes full advantage of the com-
putational properties of MDBD, expands the valid search
space in which the optimization is carried out, which can po-
tentially lead to significantly better optimal solutions that
are not achievable through the state of the art gradient-
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based optimization approaches.

6. Conclusions

In this paper, we introduced a SPI2 design automation
approach that utilizes the hierarchical Maximal Disjoint
Ball Decomposition (MDBD) along with automatic differen-
tiation to generalize the domain of the problems that can be
handled to a domain that can include practical functional
considerations. Our approach can handle complex inter-
connected systems with complex geometries, multi-physics
interactions, and a variety of product development con-
straints, such as manufacturing and life-cycle constraints.

We verified the algorithm’s ability to reach known global
optima for three distinct benchmark problems and demon-
strated the framework’s capacity for optimizing systems
with complex geometries. Additionally, we provided evi-
dence of the benefits of integrating the lengths of the in-
terconnects into the objective function to improve the per-
formance of the system. Furthermore, we formulated and



(a) (b)

() (d)

Figure 6: Thermal boundary conditions and optimized configurations for two setups: (a) and (b) showcase the initial and the final configuration
for the system with six components and nine interconnects; (c¢) and (d) display the initial and the final configuration for the ten-component
system with fifteen interconnects. The hot face maintains a fixed temperature of 100 °C, while the cold face experiences heat convection with
ambient air at 0 °C. All other boundaries within the design are treated as thermally insulated.

(a) (b) ()

Figure 7: Side-by-side comparison showcasing original outcomes versus results achieved through dimension elevation. Figure (a) displays the
initial configuration, (b) presents the original results without dimension elevation, and (c) illustrates the outcomes after applying dimension
elevation.

validated the algorithm’s abilities in handling physical in- matic differentiation, we can remove the existing constraints
teractions between the components of the system as well as on geometric complexity, and provide the ability to handle
those with the environment. realistic 3D shapes. This approach enables the incorpora-

S ) tion of sophisticated terms in the objective function and
Our findings indicate that by employing MDBD and auto-
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facilitates precise and efficient distance measurements es-
sential for collision detection.

In this work, we assigned weights to the objective terms
of the optimization problem to balance competing design
goals, such as minimizing system volume and interconnect
length. While the weights we used were integers for sim-
plicity, the results of the optimization remain unaffected
by introducing a weight normalization factor. Specifically,
such a constant normalization factor multiplying the entire
objective function would preserve the relative importance
of each term and leads to the same optimization outcome.
Moreover, the weights were chosen based on practical con-
siderations for each case study, ensuring that the optimiza-
tion process could effectively balance between the design
objectives to achieve the most suitable solution for each
scenario. While this approach provided effective solutions,
future work may incorporate a Pareto front-based method
to further refine the weight selection process and improve
the balance between competing objectives.

Our investigations of time complexity detailed in section
-2 indicate that the two most costly steps are the physical
simulations and the automatic differentiation. Even though
we used FEA augmented by uniform voxelization to simu-
late the physical internal and external interactions of our
system, the proposed approach in principle supports a va-
riety of other solution methods that would not require the
computation of the voxel occupancy at every iteration. Nev-
ertheless, exploring alternative solution methods is outside
the scope of this paper.

In its current form, our implementation leverages GPU
acceleration for evaluating objective functions and comput-
ing gradients. Notably, many components of the objective
function exhibit a high degree of parallelizability. For in-
stance, tasks such as calculating the length of interconnects
and performing collision detection involve a series of Eu-
clidean distance calculations that can be executed concur-
rently [68]. Additionally, various high-performance PDE
solvers have been proposed, and see [69, [70] for some re-
cent developments. Without a doubt, more efficient au-
tomatic differentiation approaches, distance computations,
and more careful implementations that take full advantage
of the available computational power are needed to scale up
the number of components and interconnects by one or two
orders of magnitude. Some specific suggestions were made
in the respective sections of the paper and are not repeated
here.

It is important to note that, even though the formula-
tion presented in this paper allows the inclusion of complex
geometries, objective functions, and constraints, further de-
velopments are needed in order to better support the indus-
trial needs. For example, including the ability to co-design
the components alongside the packing and routing would
allow component geometries to adapt as the system con-
figuration changes. In our current formulation, any geo-
metric changes require a re-computation of the MDBD for
the updated geometries, which introduces a significant com-
putational burden. Enhancing the MDBD computational
paradigm to address this component co-design represents a
significant direction of future work.

Last but not least, in order to avoid the entanglements be-
tween interconnects/components during the optimization,
we proposed a unique dimensional elevation strategy that
can be implemented by using the computational properties
of MDBD derived from the spherical decomposition. Specif-
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ically, by elevating the dimension of the space in which the
optimization is carried out, and then by projecting the opti-
mal configuration back onto the original space allows us to
avoid the known and difficult numerical challenges produced
by the entanglements produced by the colliding components
and interconnects during the optimization.

In summary, this work marks a pioneering effort in lever-
aging MDBD and automatic differentiation for SPI2 sys-
tem design. To the best of our knowledge, this is the first
approach that is capable of handling design situations of
practical complexity that involve complex geometries and
complex functional objectives. These advancements lay the
groundwork for future developments aimed at enhancing the
scalability and efficiency of the algorithm.
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Appendix

6.1. MDBD Computation

Given a component r-set, O, the signed distance function
(SDF) is generated for the encompassing domain and then
searched over to select the maximal radii corresponding to
the MDBD representation spheres. For an efficient com-
putation of the signed distance function, five parallelizable
steps are performed in sequence. In our work, the compo-
nent r-sets are defined using triangular meshes. Compu-
tational speed up is derived from heavy use of hardware
raytracing and using triangles’ normals to localize and re-
duce the number of sample point to triangle distance calcu-
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lations. Steps 1-3 use a ray tracing acceleration structure
built from the triangles of the defining meshes.

1. For each sample point of the encompassing domain of
O, perform an inclusion test by ray casting a vector
and counting the number of intersections. Denote I as
the set of all interior sample points of O.

2. For each mesh vertex v, average the interior-facing nor-
mals of its adjacent faces and ray trace the result to find
the point, v,, colliding with O opposite v.

3. For each triangle ¢, define a bounding box b; as the min-
imum and maximum x, y, and z coordinates from the
set {v1, va, V3, Vo1, Voz, Vo3 }, Where vertices vy, vy, v3 € t
and v,1, Vo2, and v,z are the respective collision points.
Denote B as the set of all bounding boxes.

4. Using an acceleration structure built from the bound-
ing boxes of B, for each interior sample point i € I, ray
trace a vector in any direction but with zero length.
This produces a set of bounding boxes, B;, which in-
tersect 1.

5. For each point i and associated bounding boxes b € B;,
compute the minimum distance between ¢ and t;, where
tp is the triangle which produced bounding box b. Let
M; be the set of minimum distances between point i
and triangles t;,. Assign the minimum value of M; as
the SDF value for i.

Steps 4 and 5 MDBD generation is completed by iteratively:

1. Searching over the SDF for the maximally interior dis-
tance, r, and location, c.

2. Placing a sphere s at ¢ with radius r.

3. Updating SDF values due to inserting s

A key observation is that for an inserted sphere s changed
regions in the SDF only extend to 2 * r from the sphere
center, c. Searching over the signed distance function can be
performed quicker by caching maximal interior SDF value
and locations of unchanged regions of the SDF.

Algorithms 1-3 provide high-level pseudo-code for gener-
ating the MDBD using the signed distance function regard-
less of the geometric representation of the r-set.
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Algorithm 1 Maximal Disjoint Ball Generation

10:
11:

12:
13:

1
2
3:
4

function MDBD GENERATION(7, ngpp)
Input
r The r-set which will be decomposed
neph 1The number of spheres to place in the de-
composition
ngria The number of grid cells in each coordinate
direction
s The grid cell size
Output
sph  An array of spheres. Each sphere is repre-
sented by 4 values: x, y, z, radius where x, y, z corre-
spond to the sphere’s center location.
sdf <~ SDFCOMPUTE(r, Ngrid, 5)
10
sph < Array [ngpr] > Initialize the array of spheres
where each element will hold 4 values: x, y, z, radius
while i < ngppere do
sph [i], sphRadius, sphldx
FINDSPHERE(sdf)
UpDATESDF (sdf, sphRadius, sphldz)
end while
return spheres

%

Algorithm 2 Signed Distance Function Computation

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

function SDFCOMPUTE(b, n, s)
Input

b The boundary of the r-set for which the
SDF will be generated

n The number of SDF sample points in each
coordinate direction. If n = 128 then there will be 128>
sample points total.

s The SDF grid cell size

Output
sdf An array of length n3 containing the dis-
tance values at each sample point.

Tmins Ymins mins Tmazxs Ymazr Pmaz —
BounbpIiNGBox(b)
cellcenter < S/2
sdf < Array [n3] > Initialize sdf as an
array where each element contains 4 empty fields: x, vy,
z, and sdf value
for i € n? do
sample points
idr, < i/(n*n)
idzy < (i —idx, *nxn)/z
idxy < i — (idx, *nxn) —idr, *xn
T 4— Toin + 1dxy * 8 + cellenter
Y < Ymin + dey * s+ Cellcenter
Z 4 Zpin +0dx, % s + cell conter
interior < POINTINCLUSIONRAYCAST(b, z, ¥, 2)
manDistance —
MINIMUMDISTANCETOBOUNDARY (b, , y, 2)
sdf [i] < [z, vy, 2z, interior x minDistance]
end for

> Generate and evaluate discrete
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Algorithm 3 Algorithm for determining whether a point
is in the interior of a boundary set using raycasting.

1:
2
3
4
5:
6
7
8

10:

11:

12:
13:
14:
15:
16:
17:

function POINTINCLUSIONRAYCAST(b, z,y, 2)
Input
b The boundary of the r-set

T The x-value of the point to evaluate

Y The y-value of the point to evaluate

z The z-value of the point to evaluate
Output

sign If the point is inside or on the boundary
then sign will be +1, otherwise it will be -1.
sign — —1
rayEndpoint < [0,0,00] > Set the endpoint of the
ray to be infinitely far away
intersectionVector + rayEndpoint — [z, y, 2] >
Subtract the two endpoints to create the intersection
vector.
for e € b do
if INTERSECTS (e, intersectionVector) then
sign — —1 % sign
end if
end for
return sign
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