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ABSTRACT
We investigate the cost and benefit of crowdsourcing solu-

tions to an NP-complete powertrain design and control problem.
Specifically, we cast this optimization problem as an online com-
petition, and received 2391 game plays by 124 anonymous players
during the first week from the launch. We compare the perfor-
mance of human players against that of the Efficient Global Opti-
mization (EGO) algorithm. We show that while only a small por-
tion of human players can outperform the algorithm in long term,
players tend to formulate good heuristics early on, from where
good solutions can be extracted and used to constrain the solution
space. Incorporating this constraint into the search enhances the
efficiency of the algorithm, even for problem settings different
from the game. These findings indicate that human computation
is promising in solving comprehensible and computationally hard
optimal design and control problems.

1 Introduction
Optimal design problems can still challenge our computa-

tional ability to solve them. A case in point is design of an electric
vehicle combining topology (configuration) design, proportional
design and control design for overall system optimization [1].
For example, this problem is NP complete, is not amenable to an
all-in-one solution and also has a disjoint feasible domain. Other
computationally hard design problems includematerial synthesis,
drug design, and mechanical, electrical and structural topology
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design [2–7], and much effort has been expended to devise suit-
able algorithms in high-performance computing.

More recently, "human computation" [8] has been reported
as a promising alternative to solving tough optimization prob-
lems. A seminal experiment was the Foldit [9] game, which
gathers large numbers of non-expert players (a "crowd") to per-
form protein structure prediction by minimizing the protein’s en-
ergy with spatial rearrangement of its structure. Since its launch
in 2009, Foldit has attracted 300,000 players and has shown an
advantage of human spatial reasoning for pursuing near-optimal
solutions [10]. A follow-up study showed that the most pop-
ular folding strategy derived from the crowd is comparable in
performance to an expert-developed computer algorithm for pro-
tein folding [11]. Inspired by this success, Lee et al. tackled
the challenge of RNA synthesis, a combinatorial optimization
problem [12], with the eteRNA experiment [13], showing that a
human crowd with no knowledge of the underlying science im-
proved their problem solving skills, outperformed existing com-
puter algorithms, and even contributed knowledge to the creation
of a more effective algorithm. Le Bras et al. proposed a way
to expedite search in combinatorial problems by identifying the
optimal values for a subset of variables through human-computer
interactions. They demonstrated that a material discovery prob-
lem can be cast as an online game and solved visually by human
players [14]. The Phylo game is another example that utilized
human pattern recognition capability in solving an NP-hard op-
timization problem called Multiple Sequence Alignment, where
players are set to identify similar genome sequences of animals

1 Copyright © 2015 by ASME



by moving colored blocks around [15].
These results indicate the potential of using human intuition

(sampling good design solutions [10, 12] and recognizing visual
patterns [14,15]) and human intelligence (learning and generating
design rules [11, 12]) for solving challenging optimization prob-
lems or enhancing numerical optimization solvers. Gamification,
i.e., using games purposefully [16], is one way to engage large
numbers of human participants in such tasks. The above studies
do not provide analysis on whether investment in gamification is
more cost-effective than improving existing computer algorithms.
However, it appears that such "citizen science” can be valuable
when (a) a group of trained human solvers can be gathered and
maintained, and (b) efficient solutions to a large number of prob-
lems of similar mathematical nature is desired. At this point,
the implementations of these existing games are case-dependent,
and whether their individual success can be replicated in solving
other problems remains an open question [17].

These successes and doubts regarding human computation
motivated this paper. How much can gamification or “games
with a purpose” [16] offer in solving computationally hard design
optimization problems? And, is this approach cost-effective?

Motivated by the apparent promise of human computa-
tion,this paper describes an initial attempt at gamifying and
crowdsourcing a design optimization problem. Specifically, we
investigate the costs and benefits of using human crowd com-
putation through games designed to address the aforementioned
electric vehicle design problem. The basic idea is to "learn"
(in computer science terminology) the problem’s constrained so-
lution space from successful and failed player attempts, and to
search adaptively for an near-optimal solution within this con-
strained space. This idea is an extension of apprenticeship learn-
ing (see [18] for an example), where the machine apprentice
follows or explores similar actions as the expert master.

The rest of the paper is structured as follows: We introduce
the motivating problem of vehicle powertrain design and control
in Section 2 and its gamification in Section 3. In Section 4, we
look into computational solutions to the game problem with and
without using information from human players. Section 6 com-
pares performance of human players against the computational
solution, and discusses the use of human computation as well
as some technical details of the experiment. We conclude with
Section 7.

2 Motivating Problem
A growing number of civil [19–22] and military [23–25] ve-

hicle applications are being considered for electrification due to
ever restrictive emission reduction and energy security require-
ments. With different driving conditions (speed and power de-
mands), vehicle optimal powertrain design and control strategies
can be quite different [26]. Therefore efficient design automation
is desired to identify optimal solutions given the input vehicle

specifications and driving conditions.
Fathy et al. [27] and Peters et al [28] investigated the com-

bined design and control problem and showed that ignoring the
coupling between design and control yields suboptimal solutions.
One approach to handle the coupling is to formulate an all-in-one
optimization problem to include both the design and the con-
trol [29,30] problems in a single one; another approach is to nest
optimal control within the design problem. This latter approach
is more commonly used in hybrid electric vehicle configuration
studies [1,31–33], where existing optimal control algorithms such
as Dynamic Programming (DP) [21, 34], Pontryagin’s Minimum
Principle (PMP) [35,36] and Equivalent ConsumptionMinimiza-
tion Strategy (ECMS) [37] can be applied. The DP method finds
the control strategy with globally optimal energy efficiency by
discretizing the state space and using optimal control to find a
shortest path; PMP and ECMS have lower computation cost but
can find only near-optimal solutions. The computational cost of
DP grows exponentially with the size of the state space and the
number of time steps, what is known curse of dimensionality
[38]. The search for the optimal powertrain design and control
policy can therefore become expensive, especially when a large
variety of topology design candidates exist.

These optimal control algorithms commonly used for vehi-
cle control require full information of the mechanical and electri-
cal behavior (models), as well as future driving conditions, i.e.,
probability distributions of speed and power demand. When this
information is (partially) unknown, learning mechanisms are re-
quired to guide the control strategy. In particular, when repeated
trials are allowed, such as during the design phase, apprentice-
ship (imitation) learning algorithms [18,39] are developed for the
controller to follow sample trajectories demonstrated by human
experts. This paper is different from existing reinforcement learn-
ing studies in two aspects: (1) While existing work either utilizes
an existing human expert [39] or learns a strategy (perhaps im-
plicitly through a reward function) natural to human beings [18],
here we examine a problem that is hard for individual players and
is solved through crowd competition; (2) rather than developing
a learning algorithm, here we focus on understanding the efficacy
of human computation.

3 The ecoRacer Game
We introduce the ecoRacer game [40] that translates the

powertrain design and control problem into a crowd competition.
The game asks players to drive an electric car through a given
track. Unlike traditional racer games that compete on speed,
players must spend as little energy as possible to complete the
track in 36 seconds1. To achieve this goal, players must employ
good control strategies in combination with selection of a final
drive ratio - a design variable. The final drive ratio range is

1This time limit is calibrated empirically so that the game is challenging
enough to encourage replays, but not too difficult to appall new players away.
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FIGURE 1. The ecoRacer game interface (a-d) and settings (e). The
game interface (a) is designed to work for computer and mobile screens.
Touching the gear icon to the right enters the design screen (b), where
the final drive ratio can be tuned. After each play, the score board (c)
is shown, and the player can review speed and motor efficiency profiles
of the current play in (d). Vehicle specifications, motor efficiency map,
and maximum torque curves are shown in (e).

set between 10 and 40. A higher ratio will result in a larger
output torque to the front wheels but lower maximum vehicle
speed. After each completion of the track, the battery energy
consumption is submitted as the player’s score, and players are
notified about their current ranking among all competitors. The
leading scores along with their final drive ratios are shown to the
players. We hypothesize that this last feature triggers competition
among players, leading to more plays of the game. Game features
are summarized in Figure 1.

The control only involves acceleration and braking, to ensure
that the game is intuitive and easy to play on mobile platforms
and for all audiences, including those with no driving experi-
ence. The controls are presented to the player at the beginning
of the game. Energy consumption (regeneration) by acceleration
(braking) is visualized on a battery bar. Chipmunk 2D physics
engine [41] is incorporated to model the track, car body, mo-
tor, wheels and suspensions, with supplied motor efficiency map,
maximum/minimum torque curve and other vehicle parameters.
The physics engine simulates the scene once every 1/48 second,
allowing precise control of the car by the player. For mobile de-
vices with lower computing capability, this high frequency sim-
ulation may lead to slower car movement. Since the clock counts
in real-time, the players on these devices become less competent.
In order to address this issue, we defined “one second” in the
game as the time spend on completing 48 simulation calls.

4 Computational Solutions of the ecoRacer Game
In order to benchmark the performance of human players,

this section provides two computational solutions to the ecoRacer
game. The first considers the game as a nested optimization prob-
lem: The outer loop searches for an optimal final drive ratio, while
the inner loop solves a dynamic programming problem to find the
optimal control policy for the given design. Through a nearly
exhaustive search of the discrete control and design space we
can obtain a solution close enough to the true global optimum.
We should emphasize that this approach requires all models and
parameters that constitute the game to be known. On contrary,
the second approach treats the game as a black-box function that
takes in control and design variables and outputs a score. The
black-box function is learned based on existing trials through
metamodeling (response surfaces). This latter approach is closer
to howwe usually solve optimization problemswhere simulations
or experiments are involved; it is also a fair comparison to hu-
man players as both the machine and humans learn and improve
through playing the game.

4.1 Optimal design and planning with full knowledge
Let Pbatt be the instant battery power consumption, ωmot(t)

and Tmot(t) the motor speed and torque at time t, v the vehicle
speed and a the vehicle acceleration. Also denote by tf time
spent on finishing the race, x(tf ) the distance covered at tf ,
xfinal the total track length, vmax the maximum speed limit and
amax/min the limits on the vehicle acceleration. The objective
is to minimize the battery consumption denoted by Ebatt with
respect to the final drive ratio ρ and the control of Tmot(t), while
completing the race within the time limit tmax. Note that tf
is not a free variable but it depends on the decision variables ρ
and Tmot(t). This minimization problem can be formulated as
follows:

min
ρ,Tmot(t)

Ebatt =

∫ tf

0

Pbatt(ωmot(t), Tmot(t), t) · dt

subject to tf ≤ tmax
x(tf ) = xfinal

v(0) = 0

0 ≤ v(t) ≤ vmax
amin ≤ a(t) ≤ amax.

(1)

The vehicle speed and acceleration are determined bymotor speed
ωmot and motor torque Tmot following:

v(t) = ωmot(t) Rtire/ρ

a(t) =
Tmot(t) ρ/Rtire − Fres
Mveh + 2 Jwheel/Rtire

,
(2)

where Rtire is the wheel radius; Jwheel the wheel inertia;Mveh

the vehicle mass; and Fres the resistive force, including both road
resistance and extra load from road inclination.
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We solve the energy minimization problem in Equation (1)
using a nested formulation described below.

4.1.1 Inner loop control problem The inner loop
control problem for a given design is solved by DP. Specifically,
we discretize the track into N = 180 equal steps, each corre-
sponding to 5 meters. This setting provides an accurate enough
solution while keeping a single call of the DP algorithm compu-
tationally affordable. We use the horizontal position and speed
of the vehicle as state variables and the change of speed, ∆v, as
the decision variable. At each step i, ∆v can take three values
that correspond to the three actions players can take during the
game: ∆vmax,i for acceleration, ∆vmin,i for brake, and 0 for no
action. The values of ∆vmax,i and ∆vmin,i are determined by
the motor torque limits based on the current state. To incorporate
the time constraint, we first calculate time cost along with energy
consumption for each decision at every state, and then treat the
violation in the total time span as a penalty in the DP objective.
With these assumptions, the DP formulation in Equation (1) for
given ρ becomes:

min
∆vi

N∑
i=1

Ebatt(xi, vi,∆vi) + λ

N∑
i=1

t(xi, vi,∆vi)

subject to x1 = 0

xN = xfinish

v1 = 0

0 ≤ vi ≤ vmax ∀i = {1, 2, ..., N}
∆vi ∈ {∆vmin,i, 0,∆vmax,i} ∀i = {1, 2, ..., N}
N∑
i=1

t(xi, vi,∆vi) ≤ tmax,

(3)

where λ ≥ 0 is a penalty weight: Larger λ results in smaller
tf . We use a bi-section method to find the minimum λ that
satisfies the time constraint. Note that this requires solving the
DP problem multiple times.

4.1.2 Outer loop design problem The outer loop de-
sign problem searches for an optimal final drive ratio that min-
imizes battery energy consumption. The problem is discretized
since players are only allowed to choose from a discrete set of
final drive ratios. Starting with three initial ρ values, we fit a
quadratic function to approximate the fuel consumption and it-
eratively minimize this function. We obtain convergence when
two subsequent iterations give the same optimal solution. It is
observed that for ρ > 20, no λ value yields a control solution
to satisfy the time constraint due to low vehicle maximum speed
caused by high final drive ratio. The optimal design ρ∗ = 18 is
identified, with 47.8% battery state of charge (SOC) upon finish-
ing the track. Depending on the initial set of final drive ratios
selected for the outer loop, the inner loop is called four to seven

FIGURE 2. DP results for the optimal final drive ratio. Top to bottom:
Road profile, optimal speed profile corresponding to ρ∗ = 18, and
optimal control decisions in terms of braking and acceleration.

times with each call taking 1.7 to 2 hours to converge to a λ
that satisfies the time constraint for the given final drive ratio 2.
Figure 2 summarizes the optimization results. As validation, we
tested the same strategy using the game engine and obtained a
final battery SOC of 43.4%. The difference between the game
engine and the DP calculation is due to (1) the discrepancy be-
tween the physics engine and the DPmodel, e.g., vehicle jumping
could happen in the game but is not modeled in DP, and (2) the
discretization scheme involved in the DP solution. A finer dis-
cretization will reduce the difference with increased computation
time.

4.2 Optimal design and control through Efficient
Global Optimization (EGO)

We now discuss the EGO algorithm that iteratively learns a
good design and control strategy without relying on the settings
of the game.

4.2.1 Control parameters For each play by the com-
puter (or a human player), we keep track of the control signals for
acceleration and braking, denoted by c, along with the following
four states: (1) track slope s (“1” for uphill, “-1” for downhill and
“0” for flat ground), (2) remaining distance d, (3) remaining time
t̄, and (4) vehicle speed v. We assume that the control strategy
can be parameterized by some vector w, so that, given w, the

2This simulation is performed using a desktop computer with Intel Xeon
E5-2620 CPU clocked at 2.10 GHz and 128GB RAM.
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control signal can be determined by the states:

c =


1 (Accelerate) u(s, d, t̄, v,w) ≥ 1

− 1 (Brake) u(s, d, t̄, v,w) ≤ −1

0 (No signal) otherwise
, (4)

where u(·) is a mapping from the joint space of states and control
parameters to the control signal. Denote the space of w as W ,
which represents a subset of all control strategies that a human
player can deploy. The formal determination of u(·) and W by
using human data will be discussed in Section 5. For elaboration
on the search algorithm, it suffices to consider W as a bounded
vector space and u(·) as a bounded function defined onW .

4.2.2 The score Given a final drive ratio ρ and control
parameters w, the game can be simulated to output the battery
charge consumed, denoted by e where 0 ≤ e ≤ 1, and the
remaining distance from the terminal, denoted by dend. We define
the following score as the objective to maximize for optimization:

f(ρ,w) = 1(dend = 0)(1− e)− dend, (5)

where 1(·) is an indicator function that returns 1 when its argu-
ment is true, or 0 otherwise. A successful play where dend = 0
will output the final SOC that is (1 − e), while a failed play
outputs the negative remaining distance. This objective favors
the completion of the track, but also avoids evaluating failures
indifferently.

4.2.3 The EGO algorithm We can now employ the
EGO algorithm, a search routine suitable for optimizing a
black-box function defined on a continuous and bounded design
space [42]. Denote the solution space as S := W × D, where
D = [10, 40] is the one-dimensional design space. The algorithm
starts by sampling S. It then creates a kriging model using the
initial samples and their responses. The next sample is chosen to
maximize the expected improvement of the objective. Then, the
kriging model is updated by incorporating the new sample and
its response. The modeling and sampling procedure is repeated
until some termination criterion is met. Figure 3 summarizes the
EGO procedure. The nested maximum expected improvement
problem is solved using a genetic algorithm.

5 Augmented EGO search using Human Plays
We now discuss parameterization of human plays and how

the EGO algorithm can be improved based on these plays.

5.1 Parameterization of human plays
Recall that each play can be represented as a sequence of

5-tuples with control signals and corresponding states. To avoid
over-burdening the server, we collect these 5-tuples at each unit

FIGURE 3. A one-dimensional example of EGO search (a-d). At
each iteration, the algorithm updates the kriging model and chooses the
next sample according to the maximum expected improvement function
(Merit).

distance during the play. We denote the total number of unit
distances by N and each recorded play as {ci, si, di, t̄i, vi}, for
i = 1, . . . , N 3.

To parameterize the play, one would ideally define u(·) and
fit w so that the actual control signals are preserved according
to Equation (4). In practice, we manually tune the definition of
u(·) so that replaying the best human play, i.e., with the highest
recorded score, using the converted control parameters will yield
a score close to the original one. This manual process led to the
following choice of u(·):

u(s, d, t̄, v,w) = [s, d, t̄, v, sd, sv, d/t̄, d2, d3]w. (6)
For a recorded play, the control parameters w are chosen by
minimizing the discrepancy between the true control signals and
those derived from Equation (4):

h(w) =

N∑
i=1

max{(1− u(si, di, t̄i, vi,w)), 0}21(ci = 1)

+ max{(1 + u(si, di, t̄i, vi,w)), 0}21(ci = −1)

+ max{(−1 + u(si, di, t̄i, vi,w)), 0}21(ci = 0)

+ max{(−1− u(si, di, t̄i, vi,w)), 0}21(ci = 0).
(7)

3The scores of replays using these recorded data are not the same as the original
scores from players. This is because, while the game takes player inputs once
every 1/48 seconds, we only record a subset of these signals at discrete distance
values.
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We then replay all humanplays using the converted control param-
eters along with their corresponding final drive ratios to update
scores.

Note that instead of handcrafting the function u(·), we could
also use a neural network to learn the mapping between states and
control signals, and later consider network parameters as control
parameters. On the other hand, introducing a nonlinear kernel
(e.g., Gaussian kernel) to the handcraftedmodelmay lead to better
a fit to the observed control signals, but will also introduce infinite
control parameters, which cannot be handled by an optimization
algorithm.

In addition, the EGO algorithm requires bounds to be speci-
fied for the space of control parameters. Here we identified that
the control parameters of the best human play are bounded in
[−3, 3]. Therefore settingW := [−3, 3]9 will ensure that the best
human solution is available to EGO.

5.2 Classification of human solutions
The parameterization step described above leads to a data set

describing all human plays and their corresponding scores. To
extract knowledge from this data, we create a one-class classifier
for playswith positive scores. The classifier, denoted asφ([ρ,w]),
predicts whether the input solution is likely to succeed (φ > 0) or
fail (φ ≤ 0) and can be used as a constraint during the search. The
classifier is built using LIBSVM [43] with a Gaussian kernel. The
kernel parameter γ is set to 0.1 and the training error parameter
ν to 10−6. Our rationale for training the classifier with all plays
with positive scores rather than the few with top scores is that
the former represent a broader range of strategies that finish the
track. The resultant classifier will thus represent a more relaxed
constraint in the solution space than the one derived from only
the top plays, offering solution strategies that could be more
generally applicable to the ecoRacer game with different game
settings, rather than those specialized for the current track. To
empirically demonstrate knowledge learned by the classifier from
human plays, here we examine two basic control policies that
should be applied universally to all game settings: (A) If the
vehicle has zero speed when going uphill, it should accelerate in
order to complete the track; and (B) if the vehicle is approaching
the terminalwith a high speed, it should restore energy by braking.

To verify that φ > 0 captures these two, we uniformly draw
106 samples from S. For each sample solution, we calculate its
control signals under a variety of states specified in Figure 4. We
consider each solution and states pair as a test point. The percent-
age of test points that give the correct control signal according to
the two rules can be calculated, among all samples, or the ones
that satisfy φ > 0. Results are summarized in Figure 4, showing
that incorporating φ > 0 into the search results in a significantly
higher chance of sampling reasonable solutions. In fact, the set
S consists of a large number of irrational control strategies, e.g.,
braking while running out of time, or depleting energy to rush
through the track. According to the one million samples, the sub-

FIGURE 4. The ’learned’ subspace of solutions provides more rational
control strategies. (a) Percentage of test points that follow Rules (A) and
(B) for a variety of states. The percentage is calculated for all uniformly
sampled solutions in S, and for those that satisfy φ > 0. (b) A summary
of tested states and percentages averaged across all states.

space of φ > 0 accounts for only 0.2‰ of the entire S. We shall
note that while certain heuristics (e.g., rule A) could be manually
coded into the search by the algorithm designer, others cannot.
Taking rule B as an example, while human players would decel-
erate towards the terminal to regenerate energy, the relationship
between the timing of braking and the vehicle states (e.g., speed
and distance from the terminal) is difficult to formulate explicitly,
especially when neither the environment nor the vehicle model is
assumed to be known.

6 Experiment and Results
We can now summarize the experiment with human players

and compare their performance with that of the EGO algorithm.
We then apply the classifier learned from human plays to the same
energy optimization problems with different track settings.

6.1 Comparison between human players and the al-
gorithm

The ecoRacer game was launched on November 4th, 2014,
to a sophomore engineering design class at the University of
Michigan as well as broadcasted on Facebook and WeChat. The
statistics and analysis in this paper are based on data received
during the first week following the launch. A total number of 124
unique participants registered and played the game, with 2391
plays recorded. The best play (by user “ikalyoncu”) reached a
score of 43.2%, only marginally worse than the DP solution of
43.8%. In addition, this player identified the actual optimal final
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FIGURE 5. Statistics of the ecoRacer game. (a) Distribution of players
by the number of games they played, and distribution of plays by their
score. (b) History of improvement in score for each player. Results from
EGO and DP are also shown for comparison.

drive ratio of ρ∗ = 18. It is evident that the game is either hard
or not interesting enough for most players as only 41% of players
(51 out of 124) played more than 10 times. Also evident is the
correlation between the number of attempts by each player and
their best scores. Statistics of the game are summarized in Figure
5. In the same figure we compare human performance against that
of EGO. One can see that the algorithm outperforms most players
in a long run (since they quit early on), but is inferior to the elite
players, especially during the early stage. This data, along with
feedback from some of the players, provides us the qualitative
understanding that human players are capable of learning quickly
and creating good solutions, but only a few can optimize their
solution by precisely executing the optimal control.

Note that the EGO implementation starts with five initial
samples uniformly drawn from S , thus the EGO trajectory starts
at iteration number 5. Also due to the probabilistic nature of the
initial sampling and the genetic algorithm employed to solve the
maximum expected improvement problem, the reported scores
are averaged over five independent EGO runs.

6.2 Search with and without crowdsourced knowl-
edge

The comparison between the EGO algorithm and the players
alone showed limited advantage of the latter in finding a good
solution, largely due to the fact that only a small fraction of

players have the necessary persistence to fine tune their strategy
by playing repetitively. However, as we show in Figure 6, the
method introduced in Section 5.2 allows us to turn player data
into a constraint in the solution space and enhance the search for
games that were not played by humans. Specifically, we tested
three different tracks: The “inverse” track, “hill”, “zigzag” and
“long" tracks4. For each track, we run the EGO algorithm with
and without enforcing the constraint φ > 0 during the search.
In either case, the algorithm starts with five initial samples and
terminates after a total of 200 samples. Since φ is created using a
support vector machine, the initial samples are randomly chosen
among the support vectors when the constraint is incorporated,
or otherwise randomly sampled from S. Figure 6 compares
performance from the two algorithm settings, using the average
values and standard errors from five independent EGO runs for
each case. The result shows that while EGO without human
plays can identify good solutions in long run, the algorithm can
take a significant early advantage by using heuristics extracted
from human plays. Further, we show that knowledge learned
from human players are transferable to different track settings,
and scalable to longer tracks, offering a promising solution to the
curse of dimensionality.

6.3 Discussion
The experiment and simulation studies presented here help

to answer questions regarding the use of human computation for
engineering design.

Why would human beings be useful in an optimization task?
Human computation, often in the form of crowdsourcing, has
mainly been successful in batch tasks that rely on human intu-
ition rather than computational resource, see [8] for examples.
Nonetheless, human computation becomes especially beneficial
when intuitive tasks are actually computationally expensive. As
has been demonstrated by Foldit and eteRNA, some human play-
ers have excellent ability at solving spatial optimization prob-
lems, as their search efficiency outperforms that of computer
algorithms. The ecoRacer game, similarly, is based on the hy-
pothesis that some players are well trained at tuning their control
strategy and design through trial-and-error. The hypothesis is
reasonable considering that people around the world spend three
billion hours training themselves in online games everyweek [17],
and that a large portion of the games require players to perfect
their control. As Figure 5 showed, some players learned good
strategies much earlier than the algorithm did. It should, how-
ever, be noted that the underlying optimization problem must be
well translated (and camouflaged) by the game so that people
can appreciate the problem and enjoy the fun without facing the
actual engineering problem. This requirement leads to the next
question.

4The “inverse" track flips the original track from the game, and in the “long”
track we duplicate the original track and the energy capacity five times.
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FIGURE 6. Comparison between EGOwith andwithout human knowl-
edge, using the “inverse”, “hill”, “zigzag” and “long" tracks. The “long”
track is five times as long as the others.

Is it worth expending the effort of translating any particu-
lar problem and even building a game for it, in the hope that
some talented people could solve it? Human computation ex-
periments require significant effort to create the proper game
environment and to establish sophisticated competition, collab-
oration and rewarding mechanisms. These efforts are necessary

for continuously growing the player population in order to in-
crease the chance of finding talented players. The efforts are not
likely to be worthwhile if the underlying problem needs to be
solved only once. Given sufficient computational resources, the
computer algorithm is likely to outperform human players either
by iterating long enough (see Figure 7 in [11] for an example)
or by solving the problem via brute-force, e.g., shortest path in
a discrete space5. Protein folding [10], RNA synthesis [12] and
powertrain design for vehicles of particular usage may be tough
enough problems requiring repeated solution and thus worthy of
human computation investment. In addition, we should empha-
size that extracting heuristics from human players and applying
them to new problem settings, as demonstrated in [11, 12] and
this study, could be of significant importance in solving problems
facing the curse of dimensionality.

Given that players are more likely to spend their spare time
on playing regular games than solving scientific or engineering
puzzles, is human computation a realistic alternative?. For ex-
ample, while Foldit attracted 300,000 players, there are hundreds
of millions of active users of Angry Birds [17]. Given this reality,
even if human computation is proven viable for solving computa-
tionally expensive design optimization problems, would there be
enough players per problem for the strategy to be effective? Our
experiment, as well as existing reports on human computation,
showed that the problem can be efficiently solved by a small popu-
lation of core players. In the case of ecoRacer, it was those players
who contributed the successful plays. This finding implies that
while the crowd attracted for any particular problem will not nec-
essarily be large, these self-motivated participants may suffice to
produce valuable data to expedite problem solving.

Some technical issues and remedies of the presented eco-
Racer experiment are discussed as follows:

1. We note that converting user control signals to control
parameters w caused discrepancy in the resultant scores. This
is because the bases in the mapping u(·) are chosen so that the
score derived from the best play’s control parameters is close
to its actual score. Therefore technically, the classifier φ is not
derived directly from the genuine player data. This discrepancy
can be reduced by choosing a better set of bases for u(·) that
closes the gaps between each play’s original score and that from
the converted control parameters.

2. In this study we used a one-class classification that solely
extracts knowledge from successful plays. An alternative ap-
proach to test would be to take failed plays into account and
derive a binary classifier. It is also possible to create the classifier
by utilizing the actual scores, as opposed to the binary “failed”
and “successful” labels.

5While finding a shortest path is polynomial, generating the graph could be
exponential with respect to the track length.
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7 Conclusion
We examined the costs and benefits of incorporating game-

based human computation versus a standard black-box search al-
gorithm in the context of an optimal powertrain design and control
problem. The results showed that, while only a small portion of
human players outperformed the algorithm, useful heuristics can
be extracted from the recorded plays and effectively applied to
problem settings that were not presented to the players. This
indicates the promising use of human computing in transfer-
ring knowledge learned from human-comprehensible problems
to similar ones of larger scale or difficulty, to achieve scalable
and effective search. The findings from this paper offer useful
insights for future attempts at solving computationally expensive
engineering optimization problems through human computation
In future work, it would be also interesting to investigate how
decomposition strategies involving problem partitioning and co-
ordination that have been effectively applied to numerical solvers
can be incorporated within a human computation framework.
With a larger crowd of participants, we could also investigate the
relationship between the crowd size and its performance. Lastly,
it is valuable to explore game mechanisms that encourage players
to improve their strategies in more efficient ways.
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