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ABSTRACT 
A primary concern in product design is ensuring high 

system reliability amidst various uncertainties throughout a 

product life-cycle. To achieve high reliability, uncertainty data 

for complex product systems must be adequately collected, 

analyzed, and managed throughout the product life-cycle. 

However, despite years of research, system reliability 

assessment is still difficult, mainly due to the challenges of 

evolving, insufficient, and subjective data sets. Therefore, the 

objective of this research is to establish a new paradigm of 

reliability prediction that enables the use of evolving, 

insufficient, and subjective data sets (from expert knowledge, 

customer survey, system inspection & testing, and field data) 

over the entire product life-cycle. This research will integrate 

probability encoding methods to a Bayesian updating 

mechanism. It is referred to as Bayesian Information Toolkit 

(BIT). Likewise, Bayesian Reliability Toolkit (BRT) will be 

created by incorporating reliability analysis to the Bayesian 

updating mechanism. In this research, both BIT and BRT will 

be integrated to predict reliability even with evolving, 

insufficient, and subjective data sets. It is shown that the 

proposed Bayesian reliability analysis can predict the reliability 

of door closing performance in a vehicle body-door subsystem 

where the relevant data sets availability are limited, subjective, 

and evolving. 

1. INTRODUCTION 
In the last three decades, engineering analysis and design 

methods have advanced to improve reliability of an engineering 

product system while considering uncertainties in the system. 

However, little attention has been made to data modeling with 

evolving, insufficient, and subjective data sets. In this paper, we 

refer the data which are not static but evolve with time as 

“evolving data”, refer the data which are not sufficient to fully 

characterize random behavior as insufficient data and, similarly, 

refer the data which are pertaining to or perceived only by 

individuals as subjective data. To be clear, aleatory uncertainty 

is defined as the uncertainty which arises because of natural 

unpredictable variation in the performance of the system under 

study whereas epistemic uncertainty is defined as the 

uncertainty which is due to a lack of knowledge about the 

behavior of the system that is conceptually resolvable. More 

specifically, aleatory uncertainties are considered to be 

represented by statistical distributions whereas epistemic 

uncertainties are considered to be represented by limited data 

sets in this paper. Most probabilistic analysis and design 

approaches still depend on the assumed probabilistic models of 

system inputs without engaging raw data. The research that 

predicts product reliability with evolving, insufficient, and 

subjective data sets is strongly in demand for engineering 
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analysis and design. 

To ensure the reliability of the product system, diverse 

design methodologies have been developed, such as Reliability-

Based Design Optimization (RBDO) [Enevoldsen and 

Sorensen, 1994; Yu et al., 1997; Youn and Choi, 2003, 2004], 

Possibility-Based Design Optimization (PBDO) [Du and Choi, 

2006, Choi, et. al, 2006], Evidence-Based Design Optimization 

(EBDO), and Bayesian RBDO [Youn and Wang, 2008]. Most 

such research activities have focused on how to assess 

reliability effectively by simply assuming probabilistic models 

of random system inputs without engaging raw data [Youn and 

Choi, 2003; Du and Chen, 2004; Youn et al., 2008]. However, 

less attention has been paid on how to, within a probabilistic 

framework, model random physical quantities with evolving, 

insufficient, and subjective data sets. Bayesian approaches have 

been widely used in many engineering and science fields where 

data is progressively accumulated. For example, Bayesian 

reliability analysis has been applied to series systems of 

Binomial (safe or fail) subsystems and components [Fickas, et 

al., 1988], to reliability assessment of power systems [Yu, et al., 

1999], to the effectiveness of reliability growth testing [Quigley 

and Walls, 1999], to robust tolerance control and parameter 

design in the manufacturing process [Rajagopal, 2004], and to 

input uncertainty modeling by Chung et al. (2004). Two 

advanced Bayesian (maximum likelihood and parsimony) 

methods have been compared for molecular biology 

applications [Merl et al., 2005]. Bayesian updating has been 

implemented using Markov Chain Monte Carlo simulation for 

structural models and reliability assessment [Beck and Au, 

2002]. Dynamic object oriented Bayesian networks have been 

proposed for complex system reliability modeling by Weber and 

Jouffe (2006). Despite numerous efforts, it has been a great 

challenge to model uncertain product performances while 

considering evolving, insufficient, and subjective data sets. To 

overcome the challenge, this research integrates probability 

encoding methods to a Bayesian updating mechanism. It is 

referred to as Bayesian Information Toolkit (BIT). Likewise, 

Bayesian Reliability Toolkit (BRT) is created by incorporating 

reliability analysis to the Bayesian updating mechanism. In this 

research, both BIT and BRT are integrated to predict reliability 

even with evolving, insufficient, and subjective data sets. With 

the effort in developing both BIT and BRT, the Bayesian 

Information, Reliability and Design (BIRD) software is 

developed by incorporating them with the Bayesian RBDO that 

the authors have developed [Youn and Wang, 2008]. 

In this paper, the proposed approach is applied for 

reliability prediction of door closing performance in a vehicle 

door system. The vehicle door system is of special concern due 

to its frequency of use and its engineering challenge with 

respect to design, assembly, and operation. A considerable 

amount of engineering effort is spent conducting hardware-

based or analytical experiments to generate information for 

supporting engineering decisions during the vehicle 

development process. At the conceptual stage, the uncertainty 

characterization of this information is largely based on expert 

judgment and data from current or past designs. As the design 

matures, analysis results and test data are collected to quantify 

the uncertainty; however, the data is usually of limited sample 

size. The door seal design engineer, for example, needs to know 

the requirements for a door seal system that isolates the 

passenger compartment from the external environment, while 

simultaneously allowing the door to be closed with minimal 

effort. A door system design must satisfy a multitude of 

functional and engineering requirements. The functional 

requirements are deduced from the voice of the customer, and 

include, for example, excellent exterior appearance/fit, interior 

quietness, protection from water leaks and dust intrusion, and 

an easy to open/close door. The functional requirements must be 

translated into measurable engineering requirements and the 

engineering solutions should be simple and include 

manufacturing restrictions. Due to the inherent uncertainties 

associated with the voice of the customer, manufacturing 

processes, material properties etc., engineers must seek an 

appropriate performance evaluation metric and corresponding 

method that can incorporate and evaluate the effect of those 

uncertainties. 

NOMENCLATURE 

R
B
 = Bayesian reliability 

Φ = standard Gaussian cumulative distribution function 

F(x) = cumulative distribution function 

F
-1

(x) = inverse cumulative distribution function 

fx(x) = probability density function 

f (• |• ) = conditional probability density function  

pfs = probability of system failure 

Gi = function of the i
th

 constraint 

C = cost function 

B(α,β)= beta function with parameters α and β 

2. BAYESIAN INFORMATION, RELIABILITY, AND 

DESIGN (BIRD) TOOLKIT 

This section presents the integration of probability 

encoding methods and reliability analysis to the Bayesian 

updating mechanism. 

2.1 REVIEW OF BAYESIAN UPDATING TECHNIQUES 

As mentioned earlier, the evolving, insufficient, and 

subjective data sets can be obtained through either measurement 

or survey during the product life cycle. To make use of the 

valuable information for product performance evaluation and 

design, BIT employs a Bayesian updating technique. This 

subsection gives a brief review of the Bayesian updating 

technique.  

Let X be a random variable with probability density 

function f (x,θ), θ ∈ Ω. From the Bayesian point of view, θ  is 
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interpreted as a realization of a random variable Θ with a 

probability density fΘ(θ). The density function expresses what 

one thinks about the occurring frequency of Θ before any future 

observation of X is taken, that is, a prior distribution. Based on 

Bayes’ theorem, the posterior distribution of Θ given a new 

observation X can be expressed as 
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Figure 1 Process of Bayesian Updating 

 

The Bayesian approach is used for updating information 

about the parameter θ. First, a prior distribution of Θ must be 

assigned before any future observation of X is taken. Then, the 

prior distribution of Θ is updated to the posterior distribution as 

the new data for X is employed. The posterior distribution is set 

to a new prior distribution and this process can be repeated with 

an evolution of data sets. This updating process can be briefly 

illustrated in Fig.1 [M. Rausand and A. Høyland, 2003]. 

Let us consider a normal inference model as one example 

to illustrate the Bayesian updating process. For the normal 

distribution with a known standard deviationσ, the likelihood 

function for the parameter θ, mean value of the normal 

distribution, is expressed as 

 ( )
2

2
1

1 1
( | ) exp

22

N

i

i

p X xθ θ
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Suppose a conjugate prior distribution for the mean value 

parameter follow a normal distribution with the known 

parameter of standard deviation σ. The prior distribution has its 

mean, u, and variance, τ2
. Then due to the conjugate property, 

the posterior distribution can be obtained through the Bayesian 

updating process which also follows the normal distribution 

with the mean and variance as [Andrew Gelman, et al]:  
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Conjugate models of Bayesian updating are quite useful for 

uncertainty modeling with the type of data sets we discuss, since 

the prior and posterior distributions are given in a closed form. 

However, it is found that the Bayesian updating results often 

depend on selection of the prior distribution models in the 

conjugate models. To eliminate the dependency, a non-

conjugate Bayesian updating model is developed using Markov 

Chain Monte Carlo (MCMC) methods. This is, however, more 

computationally intensive. 

2.2 BAYESIAN INFORMATION TOOLKIT (BIT) 

As mentioned earlier, a great challenge exists in dealing 

with evolving, insufficient, and subjective data sets while 

performing reliability analysis. BIT is developed by integrating 

probability encoding methods to the Bayesian updating 

technique. 

Probability Encoding Methods 

To systemically extract and quantify subjective information 

that comes from individual judgment about uncertain quantities, 

the probability encoding [C.S.Spetzler, et al 1975; Wallsten and 

Budescu, 1983; Winkler, 1967] methods are employed in BIT.  

The methods employ an interview process and most are based 

on questions for which the answers can be represented as points 

on a cumulative distribution function. The different encoding 

methods used vary according to whether they ask a subject to 

assign probabilities (P), values (V), or both. The three basic 

types of encoding methods are listed below. 

• P-Methods require the subject to respond by specifying 

points on the probability scale while the values are fixed. 

• V-methods require the subject to respond by specifying points 

on the value scale while the probabilities remain fixed. 

• PV-methods ask questions that must be answered on both 

scales jointly; the subject essentially describes points on the 

cumulative distribution. 

Probability encoding consists of a set of questions that the 

subject responds to either directly by providing numbers or 
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indirectly by choosing between simple alternatives or bets. In 

the direct response mode, the subject is asked questions that 

require numbers as answers which will be given in the form of 

either values or probabilities depending on the method being 

used. In the indirect response mode, the subject is asked to 

choose between two or more bets. The bets are adjusted until 

the subject is indifferent to choosing between them. This 

indifference can then be translated into a probability or value 

assignment. Besides choosing between bets, another procedure 

is to ask the subject to choose between events defined on the 

value scale for the uncertain quantity, where each event 

represents a set of possible outcomes for the uncertain quantity. 

Subjective data in examples shown in Section 3 are obtained 

using the direct probability encoding procedure.  

The following part of this section is a probability encoding 

example by using PV method. Two subjects are questioned 

about tomorrow’s temperature with respect to both highest 

temperature value and corresponding probabilities. Results are 

shown in table1.  By using this PV method, we can obtain a 

curve similar to the CDF of the temperature distribution, as 

shown in Figure 2, and this format of data can then be used to 

model the temperature distribution by Bayesian Updating 

technique. 

Table 1 Results of the temperature survey 

Subject I Subject II 
Temp. Prob Temp Prob. 

22 0.10 23 0.08 
25 0.16 25 0.10 
26 0.40 27 0.25 
27 0.55 28 0.60 
28 0.75 29 0.85 
29 0.90 30 0.95 
30 0.95 31 0.99 
31 1.00 33 1.00 

 

 
Figure 2 Results of the temperature survey 

2.3 BAYESIAN RELIABILITY TOOLKIT (BRT) 

In many engineering applications, outcomes of events from 

repeated trials can be a binary manner, such as occurrence or 

nonoccurrence, success or failure, good or bad, etc. In such 

cases, random behavior can be modeled with a discrete 

probability distribution model. In addition, if the events satisfy 

the additional requirements of a Bernoulli sequence, that is to 

say, if the events are statistically independent and the 

probability of occurrence or nonoccurrence of events remains 

constant, they can be mathematically represented by the 

binomial distribution [Haldar and Mahadevan, 2000]. In other 

words, if the probability of an event occurrence in each trial is r 

and the probability of nonoccurrence is (1-r), then the 

probability of x occurrences out of a total of N trials can be 

described by the probability mass function (PMF) of a Binomial 

distribution as 

 ( ) ( )Pr , | 1 0,1,2, ,
N xx

N
X x N r r r x N

x

− 
= = − = 

 
…  (4) 

where the probability of success identified in the previous test, 

r, is the parameter of the distribution. 

In Eq.(4), the probability of x/N (x occurrences out of N 

trials) can be calculated when a prior distribution on r is 

provided. This inference process seeks to update r based on the 

outcomes of the trials. Given x occurrences out of a total of N 

trials, the probability distribution of r can be calculated using 

Bayes’ Rule as [Li et al., 2002] 

 ( )
( ) ( )

( ) ( )
1

0

|
|

|

f r f x r
f r x

f r f x r dr
=

∫
 (5) 

where f (r) is the prior distribution of r, f (r | x) is the posterior 

distribution of r and f (x | r) is the likelihood of x  for a given r. 

The integral in the denominator is a normalizing factor to make 

the probability distribution proper. The prior distribution is 

known for r, prior to the current trials. In this paper, a uniform 

prior distribution is used to model r bounded in [0, 1]. 

However, it is possible to obtain a posterior distribution with 

any type of a prior distribution. 

For Bayesian reliability predictions, both a prior reliability 

distribution (r) and the number (x) of safety occurrences out of 

the total number of test data sets N must be known.  If the 

prior reliability distribution (r) is unavailable, it will be simply 

modeled with a uniform distribution, r ~ U (a, b) where a < b 

and a, b ∈ [0, 1]. At an early design stage, it can be modeled 

using reliability from the previous product designs or expert 

opinions. Alternatively, if the reliability distribution has been 

predicted with a data set in a precedent test, this reliability 

distribution will be used as the prior reliability distribution and 

updated to a posterior reliability distribution with new test data. 

In either of these alternative cases, reliability can be modeled 

with a Beta distribution, the conjugate distribution of the 

Bayesian binomial inference, since the uniform distribution is a 

special case of the Beta distribution. The PDF of the Beta 

distribution is expressed as 
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where α = x + 1 and β = N − x + 1. The posterior distribution, 

f(p|x), is the Beta distribution and represents the probability 

distribution of reliability. It is found that the distribution is a 

function of x and N, the number of safety trials and the total 

number of trials, respectively. 

When only epistemic uncertainties are engaged to assess 

reliability, its PDF can be modeled using the Beta distribution 

in Eq. (6) by counting the number of safety occurrences, x. In 

general, both aleatory and epistemic uncertainties generally 

appear in most engineering design problems. In such situations, 

the PDF of reliability can be similarly obtained through 

Bayesian reliability analysis. To build the PDF of reliability, 

reliability analysis must be performed at every data point for 

epistemic uncertainties while considering aleatory uncertainties. 

Different reliability measures, Rk = R(xe,k), are obtained at 

different sample points for epistemic uncertainties. In Eq.(6), α 

= x + 1 and β = N − x + 1, where x = ∑Rk. Then, the PDF of 

reliability r with a uniform prior distribution is updated to R(Xa, 

Xe; d) as 
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N is the number of finite data sets for epistemic uncertainties. A 

detailed illustration is given in the following example. 

For design optimization, Bayesian reliability must satisfy 

two requirements: (a) sufficiency and (b) uniqueness. The 

sufficiency requirement means that the Bayesian reliability must 

be smaller than an exact reliability realized with a sufficient 

amount of data for the input uncertainties. Then, Bayesian 

RBDO provides an optimum design with higher reliability than 

target reliability, regardless of the data size. To meet the 

sufficiency requirement, an extreme distribution theory for the 

smallest reliability value is employed to guarantee the 

sufficiency of reliability. Rk values are different for different 

data sets, xe,k, of which each has the same sample size N. 

Without generating expensive data sets, the extreme distribution 

theory determines the probability distribution of the smallest R 

value that guarantees the first requirement. Then, the median 

value of the extreme distribution uniquely determines Bayesian 

reliability. To satisfy both requirements, Bayesian reliability is 

defined as the median value of the extreme distribution for the 

smallest value derived from the Beta distribution in Eq.(7). 

First, based on the extreme distribution theory, the extreme 

distribution for the smallest reliability value is constructed from 

the reliability distribution, Beta distribution. For random 

reliability R with the Beta distribution function, FR(r), let 
1
R be 

the smallest value among N data points for random reliability, 

R. Then the Cumulative Distribution Function (CDF) of the 

smallest reliability value, 
1
R, can be expressed as [Singiresu S. 

Rao, 1997] 

 ( ) ( ) ( )1

1 1 21 , , , N

R
F r P R r P R r R r R r− = > = > > >�  (8) 

Since the i
th

 smallest reliability values, 
i
R (i = 1,…, N), are 

identically distributed and statistically independent, the CDF of 

the smallest reliability value becomes 

 ( ) [ ]1 1 1 ( )
N

RR
F r F r= − −  (9) 

Bayesian reliability, RB, is defined as the median value of 

the reliability distribution. That is to say, Bayesian reliability is 

the solution of the nonlinear equation (Eq. (9)) by setting its 

left hand side to 0.5. 
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m NN
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R F F r F
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Bayesian reliability analysis can be conducted using the 

following numerical procedure: 

STEP1 Collect a limited data set for epistemic 

uncertainties where the data size is N. 

STEP2 Calculate reliabilities (Rk) with consideration of 

aleatory uncertainties at all epistemic data points. 

STEP3 Build a distribution of reliability using the Beta 

distribution in Eq. (7) with aleatory and/or 

epistemic uncertainties. 

STEP4 Construct the extreme distribution in Eq. (9) with 

the Beta distribution obtained in Step 3. 

STEP5 Determine the Bayesian reliability using Eq.(10). 

2.4 BAYESIAN DESIGN TOOLKIT (BDT) 

With the effort in developing both BIT and BRT, the 

Bayesian Information, Reliability and Design (BIRD) software 

is developed by incorporating them with Bayesian RBDO that 

the authors have developed [Youn and Wang, 2008]. Although 

this paper is not focused on Bayesian RBDO, it will be 

reviewed as one of BIRD modules. Knowing that both aleatory 

and epistemic uncertainties exist in the system of interest, 

Bayesian RBDO can be formulated as 

 

minimize  ( , ; )

subject to  ( ( , ; ) 0) ( ), 1, ,

                 ,  and ,

i

a e

B i a e t

nd na ne

a e

C

P G i np

R R R
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d d d d X X
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where PB(Gi(Xa, Xe; d) ≤ 0) = Ri
B
(Xa, Xe; d) is Bayesian 

reliability and Gi(Xa, Xe; d) ≤ 0 is defined as a safety event. 

C(Xa, Xe; d) is the objective function; d = µµµµ(X) is the design 

vector; X is the random vector; βt is the prescribed reliability 

target; and np, nd, na, and ne are the numbers of probabilistic 

constraints, design variables, aleatory random variables, and 

epistemic random variables, respectively. If the parameters 

describing a random variable are controllable among all (both 
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aleatory and epistemic) random variables, they are considered 

design variables. For instance, a random variable with a normal 

distribution may have two design variables, mean and standard 

deviation. It will be shown that the result from Bayesian RBDO 

asymptotically approaches that from the conventional (or 

Frequentist) RBDO. In other words, Frequentist RBDO is a 

special case of Bayesian RBDO because Bayesian RBDO is 

able to handle aleatory and/or epistemic uncertainties. 

3. EXAMPLES 

Two examples are employed to demonstrate the feasibility 

of Bayesian reliability analysis with evolving, insufficient, and 

subjective data sets: 1) a mathematical example and 2) door 

closing effort in the vehicle door system. 

3.1 A MATHEMATICAL EXAMPLE 

Let G(X1, X2) = 3 − X1
2
X2/20 ≤ G0 be an inequality 

constraint with two random variables where X1 is an epistemic 

random variable and X2 is an aleatory random variable, X2 ~ N 

(µ2=2.8, σ2=0.2). Besides, G0 is a random parameter which 

follows a normal distribution N (2.0, 0.05
2
) and represents the 

uncertainty of the target performance. In this mathematical 

example, the distribution for G0 is known, however, in most 

practical cases, this distribution should be determined by 

observation.  

Twenty data values are randomly sampled for X1 from an 

assumed normal distribution (µ1 = 2.9, σ1 = 0.2), as shown in 

Table 2. The table also shows the corresponding reliabilities Rk 

= Pr [G(X2) ≤ G0 | X1(k)] for k=1,…, 20 that are computed from 

reliability analyses. For example, X1(1) = 2.9277, then R1 = P(3 

− 2.9277
2×X2/20 ≤ G0) = 0.97807. Figure 3 shows the PDFs of 

the performance function G(X1 = 2.9277, X2) and G0. By 

carrying out the probability analysis for all 20 epistemic data, 

20 probability values are then obtained as shown in Table 2. 

From Table 2, the expected number of safe design points out of 

the twenty designs can be obtained from the sum of all twenty 

reliabilities, x = ∑Rk = 17.4408. As discussed in the previous 

section, the reliability can then be modeled with the Beta 

distribution as Beta(18.4408, 3.5592) at the design point, 

(µ1=2.9, µ2=2.8). This is graphically shown in Figure 4. 

To validate the results, Monte Carlo simulation (10,000 

samples) is conducted by assuming X1 to follow N (µ1=2.9, 

σ1=0.2). It gives the true reliability (=0.8345) of the design 

point. As shown in Figure 4, the true reliability is close to the 

mean value of the reliability distribution. Therefore, the 

reliability distribution gives a quite feasible estimate with both 

aleatory and epistemic uncertainties. In this example, a uniform 

distribution, r ~ U(0,1), is used as the prior distribution of 

reliability. Therefore, the reliability distribution appears to be 

widely distributed, but it can be narrowly distributed if the prior 

distribution is more precisely given. 

 

Table 2 X1 samples and probabilities 

X1 Probability X1 Probability 

2.9277 0.97807 3.4741 1.00000 
2.7605 0.76836 2.9575 0.98709 
2.775 0.80247 2.9029 0.96671 

3.1006 0.99929 2.9430 0.98323 
2.8175 0.88239 2.8196 0.88559 
2.5933 0.24267 2.9706 0.98986 
3.1047 0.99936 2.7157 0.64237 
2.9604 0.98775 2.6738 0.50406 
3.1706 0.99986 2.8869 0.95693 
2.9354 0.98082 2.8185 0.88392 

 

 
Figure 3 PDFs for G(X1, X2) and G0 

 

 
Figure 4 Actual and estimated reliability distribution 
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Figure 5 Bayesian reliability 

 

Using Eq. (9), the extreme distribution for the smallest 

reliability value is obtained as 
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From Eq.(10), Bayesian reliability is calculated as PB = 0.6884. 

The Beta distribution for reliability, its extreme distribution for 

the smallest reliability value, and the Bayesian reliability are 

graphically shown in Figure 5. 
 

3.2 BAYESIAN RELIABILITY ANALYSIS FOR A VEHICLE 

DOOR SYSTEM 

The demonstration problem used in this study is the body-

door system of a passenger vehicle, as illustrated in Figure. 6. 

The vehicle door system is of special concern due to its 

frequency of use and its engineering challenge with respect to 

design, assembly, and operation. Variation exists in the CLD 

(Compression Load Deflection) response of the seal, the gap 

between the body and door, as well as in attaching the door to 

the car body. Besides the presence of variation, the complexity 

of the system is high due to the nonlinear seal behavior and the 

dynamics of door closing. The detail of vehicle door system 

regarding the problem description, failure mechanism 

specification, physical model creation and response surface 

construction can be found from Ref. Kloess et al (2004). The 

performance measure selected in this study to assess one aspect 

of door system design is the door closing effort. The measurable 

quantity for this performance measure is the door closing 

velocity. A response surface for door closing velocity was 

created based on results from physics-based models and the 

performance evaluation criteria were deduced from both expert 

opinions and voice of the customer information. 
For the door system example in this study, 26 random input 

variables are used to specify the uncertainty of the system. 

Within these 26 random input variables, listed in Table 3, X5, 

X6, X7, X25 and X26 are aleatory variables which, for this 

example, are assigned uniform distributions on different 

threshold values as shown in the table. Except for these five 

random input variables, all others are epistemic variables with a 

total of 79 sets of measurement data. For illustrative purpose, 

these epistemic data are partially listed in Table 4.  

In the following two subsections, we describe the modeling 

of the performance evaluation criteria, i.e. the marginal velocity, 

using the Bayesian updating technique introduced in the 

previous section followed by the Bayesian reliability analysis 

carried out for the door closure problem.  

Modeling of the Marginal Velocity 

In this subsection, the marginal velocity which serves as the 

criteria of the door performance evaluation is modeled by using 

the Bayesian updating technique based on expert opinion and 

the customer data. From a hypothetical expert, the door closing 

velocity values for customer satisfaction should be, for example, 

within the range of 0 m/s to vmax m/s. Customer survey 

regarding the door closing velocity can be carried out by using 

the direct customer survey method [C.S.Spetzler, et. al., 1975] 

and illustrative results which show the Customer Rejection Rate 

(CRR) versus the door closing velocity (normalized by vmax) are 

graphically shown in Fig. 7. For the modeling of the marginal 

velocity, CRR can be treated as the probability of the marginal 

velocity being smaller than a given a or CRR = P(vm ≤ a) 

where vm is a random marginal velocity and a is within [0, vmax] 

based on expert opinion. 

The procedure of marginal velocity modeling can be briefly 

summarized into three steps. First, based on the customer data, 

one Bayesian inference model should be specified. For example, 

if the Bayesian normal inference model is used, the marginal 

velocity will be modeled as the mean value of the normal 

distribution which is the conjugate distribution for this model. 

Second, based on the selected model, the CDF analysis can be 

carried out for the CDF/ Velocity data. After completing this 

analysis, the CDF data are then transferred to parameter data for 

the distribution. Third, with one prior distribution assumed, 

Bayesian updating can then be carried out with sets of 

parameter data. 

In this study, the Bayesian normal inference model will be 

used and the marginal velocity will be modeled as the mean 

value of a Normal distribution. As introduced in the second 

section of this paper, we suppose that the marginal velocity also 

follows a Normal distribution, which is the conjugate 

distribution of the normal inference model. Expert opinion is 

used in modeling the prior information on the marginal velocity. 

To properly model the normal distribution with the information 

from the expert, the six sigma region of the normal distribution 

is set to the interval, such that [µ − 3σ = 0, µ + 3σ = vmax].  

Although the domain of the normal distribution is [−∞, +∞], the 

contribution out of the bound [0, vmax] is negligible.  
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Normalizing by vmax, the distribution N (0.5, 0.1667) is used for 

the prior distribution of this model. 

As an example to show how the CDF analysis is carried 

out, we use a set of data, e.g., normalized velocity is 0.43 and 

customer satisfaction rate is 91.8%, from clinic A’s customer 

data shown in Figure 7. The 8.2% customer rejection rate will 

be considered as the CDF value corresponding to the velocity 

value 0.43. As we suppose σ = 0.1667, then based on the CDF 

data Z 0.082 = 0.43, we can determine that the mean value of the 

normal distribution is 0.662. For each set of customer data, the 

corresponding parameter data is determined by the CDF 

analysis. Three sets of parameter data are then obtained from 

the three sets of customer data after the CDF analysis. The 

Bayesian Normal Inference can be expressed as  

1
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where µ1, σ1 are parameters for the posterior distribution 

whereas µ0, σ0 are parameters for the prior distributions, Xi is 

the ith parameter data and σ  is the population variance. Based 

on the Bayesian Normal Inference, the PDFs for the marginal 

velocity can then be gradually refined by aggregating three 

different clinic data sets with the normal prior distribution, 

shown in Figure 8. With the clinic-A data set, the first Bayesian 

model for the marginal velocity is the posterior distribution I, N 

(0.559, 0.068
2
), shown in Fig. 8. Then this posterior distribution 

is treated as the prior distribution and combined with the clinic-

B data set, to obtain the second Bayesian model, posterior 

distribution II, N (0.606, 0.0445
2
).  Similarly with the clinic-C 

data set, the final Bayesian model is obtained as the posterior 

distribution III, N (0.5946, 0.0355
2
), as shown in Figure 8. 

Figure 9 shows the PDF and CDF of the final Bayesian model, 

N (0.5946, 0.0355
2
), for the marginal velocity. 
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Figure 6 Vehicle Door system 

 

Table 3 Random variables and descriptions 

Variable Name Description Variable Type 

X1 UHCC- Upper hinge location in cross-car direction Epistemic 

X2 LHCC- Lower hinge location in cross-car direction Epistemic 

X3 LATCC-Latch location in cross-car direction Epistemic 

X4 LATUD-Latch location in up-down direction Epistemic 

X5 Primary seal CLD property factor U(0.7, 1.3) 

X6 Auxiliary seal CLD property factor U(0.7, 1.3) 

X7 Cutline seal CLD property factor U(0.7, 1.3) 

X8 Primary Seal Margin Region 1 Epistemic 

X9 Primary Seal Margin Region 2 Epistemic 

X10 Primary Seal Margin Region 3 Epistemic 

X11 Primary Seal Margin Region 4 Epistemic 

X12 Primary Seal Margin Region 5 Epistemic 

X13 Primary Seal Margin Region 6 Epistemic 
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X14 Primary Seal Margin Region 7 Epistemic 

X15 Primary Seal Margin Region 8 Epistemic 

X16 Primary Seal Margin Region 9 Epistemic 

X17 Primary Seal Margin Region 10 Epistemic 

X18 Primary Seal Margin Region 11 Epistemic 

X19 Primary Seal Margin Region 12 Epistemic 

X20 Primary Seal Margin Region 13 Epistemic 

X21 Primary Seal Margin Region 14 Epistemic 

X22 Primary Seal Margin Region 15 Epistemic 

X23 Primary Seal Margin Region 16 Epistemic 

X24 Primary Seal Margin Region 17 Epistemic 

X25 Auxiliary Seal Margin U(-1, 1) 

X26 Cutline Seal Margin U(-1, 1) 

 

Table 4 Data for Epistemic Random Variables 

Data 
Variables 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 … Set 79 

X1 1.62 2.29 1.58 1.58 1.19 1.696667 … 2.16 

X2 2.82 2.49 1.8 2.1 2.03 1.365 … 1.355 

X3 2.555 2.1 1.82 1.67 1.75 1.010714 … 1.35 

X4 -0.38 -0.35 -0.01 -0.01 0.61 -0.43833 … -0.61 

X8 1.655 1.235 1.015 0.715 0.71 -0.05583 … 0.559167 

X9 1.0775 0.7725 0.5925 0.2825 0.115 -0.31375 … 0.39875 

X10 0.5 0.31 0.17 -0.15 -0.48 -0.57167 … 0.238333 

X11 1.24 0.74 0.426667 0.113333 -0.23 -0.02167 … 0.955 

X12 -0.27 -0.31 -0.28 -0.66 -1.29 -0.09167 … 0.278333 

X13 0.03 0.16 -0.205 -0.29 -1.02 -0.3125 … 0.1125 

X14 0.33 0.63 -0.13 0.08 -0.75 -0.53333 … -0.05333 

X15 0.5 0.79 0.06 0.22 -0.76 -0.345 … 0.135 

X16 0.89 1.01 0.87 0.27 -0.63 0.02 … 0.24 

X17 0.27 0.51 -0.01 -0.21 -1.565 -0.18667 … 0.233333 

X18 -0.35 0.01 -0.89 -0.69 -2.5 -0.39333 … 0.226667 

X19 -0.35 0.01 -0.89 -0.69 -2.5 -0.39333 … 0.226667 

X20 -0.44 -0.53 -1.27 -1.55 -2.93 -0.76667 … -0.37667 

X21 -0.44 -0.53 -1.27 -1.55 -2.93 -0.76667 … -0.37667 

X22 0.16 -0.03 -0.7125 -0.8625 -1.6825 -0.17125 … 0.12375 

X23 0.76 0.47 -0.155 -0.175 -0.435 0.424167 … 0.624167 

X24 1.49 0.91 0.56 0.27 0.91 0.075 … 0.535 
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Figure 7 Customer Rejection Rate 

 

 

Figure 8 Bayesian Updating for the Marginal Velocity using a 

Normal Distribution 

 

 

Figure 9 Bayesian Model for the Marginal Velocity using a 

Normal Distribution  

 

Bayesian Reliability Analyses for a Vehicle Door System 

Based on the marginal velocity PDF created, Bayesian 

reliability analysis is then carried out for the door closing effort 

problem with both aleatory and epistemic uncertainties. For a 

given set of input values, the performance response can be 

obtained from the response surface created based on the 

physical model [A. Kloess et al, 2004]. Since Bayesian 

reliability analysis requires the probabilistic performance 

evaluation for each set of epistemic data, two different 

approaches, Monte Carlo Simulation (MCS) and Eigenvector 

Dimension Reduction (EDR) method [Youn, et. al., 2008], are 

employed in this study to calculate the reliability for each set of 

epistemic data. EDR method is an efficient and accurate 

sensitivity free method for reliability analysis. Results for the 

door closing effort problem in this study from MCS and EDR 

are compared.  

First, for each set of epistemic data, direct Monte Carlo 

Simulation is used to carry out the reliability analysis. For each 

aleatory variable (including the variable of marginal velocity), 

10,000 samples are generated and used for MCS. Table 5 shows 

the 55 reliabilities corresponding to the first 55 sets of epistemic 

data. Based on Table 5, we carried out the Bayesian reliability 

analysis and obtained the reliability distribution as Beta 

(53.524, 3.476). Then by the Bayesian reliability definition 

described in Section 2.3, the extreme distribution of the smallest 

value for the Beta distribution is constructed and the Bayesian 

reliability is realized as 0.849185. Figure 10 shows the Beta 

distribution, extreme distribution and the Bayesian reliability 

value. With 24 new data sets involved for the epistemic random 

variables the Bayesian reliability is updated. The updated 

reliability distribution is Beta (77.1869, 3.8131) and the 

Bayesian reliability is updated from the original 0.849185 to 

0.880935. Table 7 shows the reliabilities corresponding to each 

set of the new involved data. Figure 11 shows the updated Beta 

distribution, extreme distribution and the Bayesian reliability. 

As we can see from the Monte Carlo Simulation method, 

the reliability analysis for each set of epistemic data can require 

a large amount of response performance evaluations depending 

on the simulation sample size (in this case 10,000). In order to 

make the calculation of the Bayesian reliability more efficient, 

the EDR method is used for the probability calculation for each 

set of epistemic data. By using EDR method, the total number 

of the response performance evaluation is reduced from 10,000 

to 2n+1=13. Based on the marginal velocity PDF created in 

subsection 1, the reliability Ri of a certain design (Xa, Xe
i
) can 

be formulated as Ri = Pr [V(Xa, Xe
i
) – Vt ≤ 0] where V(Xa, Xe

i
) 

is the performance velocity variable corresponding to a certain 

design (Xa, Xe
i
), Xa is the aleatory variable set and Xe

i 
is the ith 

set of epistemic data, and Vt  is the marginal velocity. Totally 

55 different reliabilities corresponding to 55 different sets of 

epistemic uncertainties are realized as shown in Table 6. Based 

on these results, the reliability distribution is obtained as Beta 

(53.5076, 3.4924) from Bayesian inference. Then by the 

Bayesian reliability definition, the extreme distribution of 
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smallest value for the Beta distribution is constructed and the 

Bayesian reliability is realized as 0.848752. Figure 12 shows 

the Beta distribution, extreme distribution and the Bayesian 

reliability. With 24 new data sets involved, the Bayesian 

reliability is updated. The updated reliability distribution is Beta 

(77.1567, 3.8433) and the Bayesian reliability is updated from 

the original 0.848752 to 0.880363. Table 8 shows the 

reliabilities corresponding to each set of the new involved data. 

Figure 13 shows the updated Beta distribution, extreme 

distribution and the Bayesian reliability. 

A comparison of the results from using the two different 

probability analysis approaches shows that the EDR method 

maintains good accuracy and at the same time provides a higher 

computational efficiency compared with MCS. From the 

analysis results obtained with both MCS and the EDR method, 

two points are clear: first, Bayesian reliability increases with the 

increase of the reliability value corresponding to each set of 

epistemic data; secondly, the updated Bayesian reliability 

increases with the addition of more epistemic data into the 

Bayesian reliability analysis. This is because the Bayesian 

reliability represents not only the design uncertainty of the 

system but also the uncertainty due to the limiting information 

represented by the epistemic uncertainties. As more data is 

involved, a better understanding of the characteristic of 

epistemic uncertainties can be expected and consequently a 

higher Bayesian reliability can be realized. Also, the Bayesian 

reliability analysis approach proposed in this paper offers a 

convenient and effective method for the performance evaluation 

of the problems involving several different types of uncertainty 

and where uncertainty data are continuously collected. 
 

 

Table 5   55 reliabilities corresponding to 55 epistemic data sets (by MCS) 

Data 

Set 
Rel. Data Set Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

1 0.9973 12 1.0000 23 0.9987 34 0.9995 45 0.9988 

2 1.0000 13 0.9993 24 0.9970 35 0.9998 46 0.2703 

3 0.9993 14 1.0000 25 1.0000 36 0.9999 47 0.9987 

4 0.9945 15 1.0000 26 0.9951 37 0.9999 48 1.0000 

5 0.8265 16 1.0000 27 0.9970 38 0.9974 49 0.9955 

6 0.9996 17 0.9999 28 0.9899 39 0.9977 50 0.9937 

7 0.9985 18 0.9991 29 0.9998 40 0.9918 51 0.9918 

8 1.0000 19 0.9999 30 1.0000 41 0.9007 52 1.0000 

9 1.0000 20 0.9993 31 0.9993 42 0.9976 53 0.9994 

10 1.0000 21 1.0000 32 1.0000 43 0.9778 54 0.2109 

11 1.0000 22 0.9999 33 0.9963 44 0.9730 55 0.4436 

 

 

Table 6   55 reliabilities corresponding to 55 epistemic data sets (by EDR) 

No. Data 

Set 
Rel. 

No. Data 

Set 
Rel. 

No. Data 

Set 
Rel. 

No. Data 

Set 
Rel. 

No. Data 

Set 
Rel. 

1 0.9978 12 1.0000 23 0.9991 34 0.9998 45 0.9993 

2 1.0000 13 0.9997 24 0.9976 35 0.9998 46 0.2642 

3 0.9996 14 1.0000 25 1.0000 36 1.0000 47 0.9992 

4 0.9953 15 1.0000 26 0.9963 37 1.0000 48 1.0000 

5 0.8243 16 1.0000 27 0.9977 38 0.9982 49 0.9963 

6 0.9998 17 0.9999 28 0.9893 39 0.9984 50 0.9944 

7 0.9991 18 0.9995 29 0.9998 40 0.9917 51 0.9915 

8 1.0000 19 1.0000 30 1.0000 41 0.8938 52 1.0000 

9 1.0000 20 0.9996 31 0.9996 42 0.9984 53 0.9997 

10 1.0000 21 1.0000 32 1.0000 43 0.9755 54 0.2070 

11 1.0000 22 0.9999 33 0.9971 44 0.9702 55 0.4394 
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Table 7   24 reliabilities corresponding to 24 

new data sets (by MCS) 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel 

1 0.9929 9 0.9996 17 1.0000 

2 0.9999 10 0.9989 18 1.0000 

3 0.9995 11 1.0000 19 1.0000 

4 0.9993 12 1.0000 20 0.8973 

5 0.9993 13 0.8864 21 0.9842 

6 0.9994 14 1.0000 22 0.9866 

7 0.9996 15 0.9963 23 0.9998 

8 0.9999 16 0.9240 24 1.0000 

 

Table 8 24 reliabilities corresponding to 24  

new data sets (by EDR) 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

1 0.9928 9 0.9998 17 1.0000 

2 0.9999 10 0.9993 18 1.0000 

3 0.9997 11 1.0000 19 1.0000 

4 0.9996 12 1.0000 20 0.8915 

5 0.9996 13 0.8814 21 0.9835 

6 0.9997 14 1.0000 22 0.9867 

7 0.9998 15 0.9969 23 0.9999 

8 0.9999 16 0.919 24 1.0000 

 

 

 

 

Figure 10 Bayesian Reliability with 55 sets data (by MCS ) Figure 11 Updated Bayesian Reliability w/ 24 new data 

sets (by MCS) 

 

  
Figure 12 Bayesian Reliability with 55 data sets (by EDR) Figure 13 Updated Bayesian Reliability w/ 24 new data 

sets (by EDR) 
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4. CONCLUSION 
This research presented a new paradigm of reliability 

prediction that enables the use of evolving, insufficient, and 

subjective data sets (from expert knowledge, customer survey, 

system inspection & testing, and field data) potentially over the 

entire product life-cycle. To predict reliability amidst various 

uncertainties with evolving, insufficient, and subjective data 

sets, the Bayesian updating mechanism was integrated with the 

probability encoding methods and reliability analysis. Such 

integration created Bayesian Information Toolkit (BIT) and 

Bayesian Reliability Toolkit (BRT). With both BIT and BRT, 

the Bayesian Information, Reliability and Design (BIRD) 

software is developed by incorporating them with the Bayesian 

RBDO. It was shown that the proposed Bayesian reliability 

analysis can predict the reliability of the door closing 

performance in the vehicle body-door subsystem where the 

relevant data sets availability are limited, subjective, and 

evolving. 
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