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ABSTRACT

In the design of artifacts that interact with people, the spa-
tial dimensions of the user population are often used to size and
engineer the artifact. The variability in body dimensions (called
“anthropometry”) is used to indicate how much adjustability or
how many sizes are required to accommodate the intended user
population. However, anthropometry is not the only predictor
of these kinds of interactions. For example, two vehicle drivers
with similar body dimensions might have very different preferred
locations for the seat. The variability not predicted by body di-
mensions can be considered “preference”. Well-conceived mod-
els considering all sources of variability can can facilitate the
application of design automation tools such as optimization and
robust design methodologies, resulting in products that are safer,
cost effective, and more accessible to broader populations (in-
cluding people with disabilities). In contrast, poor models and
those that fail to include a preference component can produce
misleading results that under- or over-approximate accommoda-
tion and prescribe inappropriate amounts of adjustability. This
paper reviews common methods of designing for human variabil-
ity, demonstrating the use and strengths and weaknesses of each.
This is done in the context of a simple, univariate case study to
determine the appropriate allocation of adjustability to achieve
a desired accommodation level.

INTRODUCTION

An understanding of the body dimensions and capabilities
of the population of potential users can assist engineers in creat-
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ing artifacts that meet goals of fit, safety, and other performance
metrics and systems-level design targets. Efforts since the 1950’s
have produced tools that assist in basic assessments of accommo-
dation, the degree to which a design meets the needs of the user
population. This work has culminated in recommended tools and
practices that are in common use today [1, 2, 3]. These indicate
to the engineer how to design for the variability in body dimen-
sions (or anthropometry), capability, and age, in the target user
population. The application of design automation tools facili-
tates the simultaneous consideration of these and other aspects
of designs [4, 5, 6, 7].

The goal of dimensionally optimizing a product with respect
to its users is to accommodate a certain percentage of those users
[3], often through adjustability, the creation of separate sizes, or
both. There are two general approaches to achieving user accom-
modation: manikins and population models.

Manikin-based approach

“Manikins” are typically two- or three-dimensional repre-
sentations of the human form with external contours intended to
represent human body size and shape for design. They exist as
2D templates [8] and as 3D computerized manikins [9, 10]. A
boundary manikin refers to a body geometry that lies at the limit
of acceptability. Consider a design problem in which only one
body dimension is relevant and both “small” and “large” people
must be considered. In the typical boundary manikin approach,
only two cases are necessary to describe the upper and lower
limits of acceptability. For example, to accommodate 95% of
the population, one might use the 2.5th-percentile and 97.5th-
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percentile values of the measure of interest as boundary cases. In
general, accommodation at the boundary is thought to ensure ac-
commodation at interior points, as long as the adjustability of the
product dimension is continuous [1]. Note that since the distribu-
tion of body sizes are continuous, the specific level of accommo-
dation (95%) could be achieved by targeting any appropriate span
(e.g., Oth to 95th-percentile; 2nd to 97th-percentile). Generally
the range is selected to minimize the amount of adjustability or
material (and therefore cost) required. For a single variable this
is generally the lower (Oth to 95th-percentile) or central (2.5th to
97.5th-percentile) portion of the distribution.

Since stature and weight data are most commonly available
(e.g., NHANES [11]), distributions of those variables are often
used to determine the sizes of the “small” and “large” virtual
users. In the event that the true measure of interest is something
besides stature, proportionality constants (Figure 1) are utilized
[12]. These represent the average length of a particular body seg-
ment as a proportion of stature. This approach is problematic,
however, since in a single individual the proportional lengths
vary widely from the mean. Neither is there a “standard” person
with all dimensions belonging to the same percentile [13]. For
example, when a manikin representing the body as a kinematic
linkage is scaled so that an overall dimension, such as stature,
meets some target percentile, the body dimensions that make up
the aggregate dimension do not themselves define useful design
limits. That is, a person who is Sth-percentile by stature has
other body dimensions that vary widely from the Sth-percentile
for those measures.

Instead of proportionality constants, data from anthropomet-
ric surveys can be used. For example, the ANSUR database
[14, 15] consists of 240 measurements taken from thousands of
male and female US Army personnel in the late 1980’s. From
these data, statistical measures such as the nth-percentile value
of some segment length can be calculated and used for design
purposes. However, as with any anthropometric database, cau-
tion must be exercised when using a dataset from one population
to represent a different population (i.e., the body dimensions of
a military population can vary widely from those observed in a
civilian one).

For multi-dimensional problems, a similar approach is
sometimes used, in which small and large (by stature) manikins
are created and adjusted to fit relevant product dimensions. For
example, a designer seeking an overall accommodation of 95%
in a vehicle interior might assume that if 95% of the population is
accommodated on headroom, and 95% on legroom, and 95% on
seat adjustability, that the overall goal has been achieved. How-
ever, considering each dimension separately and then combining
the results will usually yield a significantly smaller than desired
accommodation [16] since it is unlikely that the same 5% are
disaccommodated on each measure. Consequently, methods in-
corporating principal components analysis have been developed
to simultaneously consider the variability exhibited by a pop-
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Figure 1. Body lengths expressed as a proportion of stature [12].

ulation across multiple anthropometric measures. These types
of analysis yield many (e.g., 17 in [17]) “boundary” manikins
which are used to evaluate the design, rather than just two or
three. If all are accommodated, the engineer expects to achieve
the level of accommodation equivalent to the amount of anthro-
pometric variability encompassed by the selected manikins. Un-
fortunately, this approach only works in extremely constrained
cases, can produce misleading results, and provides little infor-
mation when the design is unable to accommodate one or more
of the manikins [18].

Realistic posturing is required for any use of manikins in
design [19, 4]. Sometimes, this posturing is performed manu-
ally by the designer, but to improve accuracy and repeatability
it is increasingly done algorithmically. Data are gathered on a
number of people performing similar tasks to the one in question
(e.g., vehicle ingress/egress, sitting in a seat, interacting with an
artifact, etc.). Statistical models of these data are then created to
describe the mean anticipated behavior as a function of anthropo-
metric and task conditions [20, 21]. When task-specific data are
not available, optimization may be used to determine postures
and interaction by minimizing objective functions such as torque
at a joint and energy required [22]. However, this approach can
produce inaccurate postures and lead to erroneous analyses. Both
methods assume that user interactions can be predicted by the
anthropometry and geometric constraints of the artifact, task, or
environment.

Population model approach
An alternative to the boundary manikin approach is the task-
oriented percentile model, described in [3]. These models are
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created from experimental data taken from a sample population
performing a task related to the dimension under consideration.
Required adjustability is then defined by the selections or capa-
bilities of the desired proportion of users. Both a sufficiently
large representative sample population and a workable prototype
are required. This approach forms the basis for the SAE Inter-
national recommended practices [2], which are used for vehicle
design.

These models are an improvement on manikin-based ap-
proaches in some ways, since they specifically model the out-
come measure of interest, e.g., reach, eye location, driver-
selected seat position, rather than trying to predict the popula-
tion distributions of those outcomes from boundary cases defined
by anthropometry. However, they (1) require extensive human-
subject data from a similar task scenario, parameterized using the
design variables of interest and representing a large amount of
variability on the population descriptors, e.g., body dimensions,
(2) have not historically been parameterized for population at-
tributes, although recent models (new J941 and J4004) overcome
these limitations, and (3) they are essentially univariate, dealing
with only a single outcome measure (e.g., preferred seat height)
at one time.

Hybrid approaches

In practice, some have sought to expand upon the manikin-
and population-based approaches, by combining them into a hy-
brid method. Regressions of experimental data predict the out-
come measure of interest as a function of related anthropometry
(such as stature). This allows the population model to be extrap-
olated to populations different from the one from which the data
were gathered. Unfortunately this procedure results in a practice
where artifacts are designed to meet the mean behavior associ-
ated with a particular body size (i.e., two people with the same
predictor value, such as stature, will have the same predicted per-
formance). This ignores the residual variance in the experimental
data—the preference component.

Recent research expands on this hybrid method by including
preference in the outcome measure. Reed and Flannagan [23] in-
vestigated the effect of variability unrelated to body dimensions
on driver seat position and eye location in an automobile. Parkin-
son, et. al., demonstrated a methodology for integrating design
automation tools like optimization and robust design methodolo-
gies with models of anthropometric and behavioral variability
that include preference [19, 18]. The present work expands on
this research by generally considering how variability unrelated
to body dimensions relates to traditional design approaches that
consider only anthropometry. A case study is presented involv-
ing the adjustment of the seat height of a particular exercise cy-
cle. This simple problem was selected because the preferred cy-
cle seat height for an individual should be predicted very well by
a single anthropometric measure such as stature or leg length.

METHODOLOGY

This paper considers several common ways in which
manikins and population models are applied in product design.
The product is an upright exercise cycle (PRO-FORM XP70).
The metric of interest is the minimum seat height and its range of
adjustability. In each scenario, the engineer or designer applying
it would expect 95% accommodation of the target user popula-
tion. The first two methods utilize traditional boundary manikin
approaches considering only anthropometry to determine seat
height. As discussed previously, one advantage to these meth-
ods is that they don’t require any experimental data: either hip
height or stature is used as the measure of interest. Following
these, the use of a population model is illustrated. Then a hy-
brid manikin/population model in which the mean behavior for
a given body size is predicted. Finally, these are all compared
against the new methodology, in which the residual variance in
the regression model is retained to account for user preference.

It is important to note that this case study is used only for
the illustration of various methods of dimensionally optimizing a
product. The actual results are highly dependent on the product
and task to be performed, so general conclusions regarding ex-
ercise cycle seat height may not be drawn from this study. The
target users are taken to be the male ANSUR population [14],
selected because of the extensive anthropometric measures avail-
able for the sample.

Boundary manikins: proportionality constants and
ANSUR

In the first two basic approaches toward determining range
of seat adjustability, the way in which users will sit on the cy-
cle, and therefore their desired seat height, is entirely unknown.
It is proposed that they will sit such that their heel just touches
the ground while seated (with legs unbent). This means that the
seat height setting for each user will equal hip height. Bound-
ary manikins with dimensions belonging to the 2.5th and 97.5th-
percentile person are taken to represent 95% of the population.

Following common practice, the first approach uses two
boundary manikins with hip height derived from the 2.5th and
97.5th-percentile stature (for males) using the proportionality
constants in Figure 1. This approach is termed Manikin-k
(boundary manikins-using proportionality constant k). The sec-
ond approach uses two boundary manikins with hip height taken
directly from the actual 2.5th and 97.5th-percentile hip height
from ANSUR. This approach is termed Manikin-ANSUR.

Population model

Experimental data are required for the creation of the pop-
ulation model. The stature and preferred exercise bicycle seat
height were measured for forty-two male engineering students
in a study conducted at The Pennsylvania State University. The
study received approval from an appropriately constituted inter-
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nal review board. Since females are not adequately represented
in the sample, the restriction that only adult males are to be ac-
commodated is imposed. This leads to our choice of using only
ANSUR males as a representative database but does not impact
the validity of the results or the methodology.

Each participant was asked to get on the exercise cycle,
pedal a few revolutions, and then adjust seat height setting. This
process could repeated as many times as necessary to achieve a
desired position. After completing this task, the height of the seat
top from the ground was recorded for each participant. A stature
adjustment of 25 mm was included to account for the thickness
of shoes (stature measures are generally taken without them). It
should be noted that the seat post was unmodified, and the origi-
nal pre-drilled stops were used that provided an adjustable range
of 243 mm, in discrete increments of approximately 25 mm. De-
spite limits on the range of adjustability, the data are not thought
to be censored since no member of the sample noted a preference
for a higher or lower setting than those available.

To create the population model, statistical analysis is per-
formed directly on the experimental data. The data were assumed
to be normally distributed and the 2.5th and 97.5th-percentile
values are determined using the mean and standard deviation.
These results are termed Population model.

Hybrid: mean behavior

In a hybrid of the manikin and population model approaches,
linear regression analysis is performed using the selected seat
height and stature for the sample to create a seat height prefer-
ence model. Stature is used as the predictor, instead of hip height,
since stature data is widely available for a variety of popula-
tions. The resulting regression line is used to predict the selected
seat height of two boundary manikins, characterized by 2.5th and
97.5th-percentile stature. This approach is termed Hybrid-mean.

Hybrid: with residual variance

Using a methodology described in [19] and [24], the fifth
approach uses the regression parameters of the seat height pref-
erence model to generate a virtual population of 1000 users ran-
domly sampled from the ANSUR database. The preferred seat
height, including a component indicating how their preference
deviates from the mean, is calculated for each virtual user. This
is done by randomly sampling from a normal distribution about
the mean seat height for that stature. This distribution is char-
acterized by a mean equal to the seat height predicted by the
regression equation and a standard deviation equal to the root-
mean-square error of the regression (i.e. 6 = RMSE) [25]. For
this reason, this method will be termed Hybrid-ResVar.

RESULTS

The adjustment ranges calculated using each of the meth-
ods are reported in Table 1. The engineer anticipates achieving
95% accommodation with each of the methods, although they
all produce different results. The results are all compared to the
Hybrid-ResVar method, which has been shown in other studies
to most accurately predict actual expected accommodation levels
[23, 18].

Boundary manikins: proportionality constants and
ANSUR

The 2.5th and 97.5th-percentile values of male stature from
ANSUR are 1625 mm and 1887 mm, respectively. For the
Manikin-k method, hip height is found as a proportion of stature
(H = 0.5308), and so the lower and upper values are 861 mm
and 1000 mm. Following the assumption that hip height equals
selected seat height, and adding the 25 mm shoe thickness, the
lower and upper limits of seat height adjustment become 886 mm
and 1025 mm. For the Manikin-ANSUR method, hip height
is found directly from ANSUR; the 2.5th and 97.5th-percentile
hip height measures are 835 mm and 1022 mm. Therefore, the
lower and upper limits of seat height adjustment are 860 mm and
1047 mm, with shoe thickness added.

Population model

The mean of the seat height selections of the sample popu-
lation is 943.2 mm and the standard deviation is 46.3 mm. Us-
ing a k-value of 1.96, the lower limit for 95% accommodation is
852 mm and the upper limit is 1034 mm.

Hybrid: mean behavior
Figure 2 shows the plot of selected seat height versus stature
(with shoes) for the sample population. The equation for the

Table 1. Summary of the results for all methods, showing required low
and high seat settings, adjustable range, and % accommodated (com-
pared with Hybrid-ResVar method). Dimensions in mm.

Method Low High Range % Accom.
Manikin-k 886 1025 139 82.5
Manikin-ANSUR 860 1047 187 93.2
Population 852 1034 181 93.6
Hybrid-mean 872 1007 135 82.5
Hybrid-ResVar 844 1036 192 95.0
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Figure 2. Selected seat height plotted against stature for the 42-member
sample, with regression line.

resulting regression line is given by
P=0.5155+22.1 (1

where P is selected seat height position and S is stature. R for the
regression is 0.41 and the RMSE is 35.2 mm. Table 1 denotes the
results of entering the 2.5th and 97.5th-percentile statures (with
shoe thickness added) into Equation 1, which subsequently de-
fines the limits of required seat height adjustment for the Hybrid-
mean method.

Hybrid: with residual variance

Figure 3 shows the distribution of the stature of the 1000
virtual users selected from the ANSUR database for use in
the Hybrid-ResVar method. The mean of the distribution is
1756 mm, identical to the mean of all males in ANSUR. Figure 4
shows the result of plotting these statures using the regression
line of Equation 1. Introducing a preference component by way
of a term representing the residual variance to describe deviation
from the mean gives

P=0.5155+22.14+N(0,35.2) 2)

where N is a normal distribution with a mean of 0 and a standard
deviation of 35.2 (RMSE of the regression). Figure 5 shows the
1000 seat positions predicted for the 1000 statures using Equa-
tion 2. 95% accommodation is achieved by selecting the central
950 users with their seat height selections placed in order.
Figure 5 also compares the results of the Manikin-k,
Manikin-ANSUR, Hybrid-mean, and Population model methods
with the result of the Hybrid-ResVar method. The band of ac-
commodated users given by the defined lower and upper limits
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Figure 3. Distribution of 1000 random statures used in the Hybrid-
ResVar method.
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Figure 4. Seat height setting for 1000 random statures, located with re-
gression equation with no preference component.

in Table 1 is shown for each method by the bars at left, and the
results for the Hybrid-ResVar method are extended across the
figure by the solid lines. Points above or below these limits rep-
resent disaccommodated users. Table 1 also denotes the number
of accommodated users, expressed as a percentage.

DISCUSSION

The results show the wide range of recommended designs
which these various methods—all of which are in common use—
provide to this extremely simple univariate design problem. They
also indicate the importance of including preference, the variabil-
ity that is unrelated to body dimensions and artifact geometry.
Ignoring this variability can result in designs with too much ad-
justability (thereby increasing cost unnecessarily) or, more com-
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Figure 5. The stature and seat selections of the 1000 member sam-
ple are plotted with preference included. Adjustment limits defined by
the Hybrid-ResVar method are denoted by the lines running the length of
the plot, and adjustable range defined by the Manikin-k, Manikin-ANSUR,
Hybrid-mean, and Population model methods are denoted by the bars at
left.

monly, too little adjustability (causing users to interact with the
artifact, task, or environment in unexpected ways). Designers are
often surprised when actual use indicates lower than expected ac-
commodation and are unable to explain how this occurred. To
prevent this under-approximation of accommodation, a designer
may allocate an extremely large amount of adjustability to the
problem, such that an accommodation level approaching 100%
is expected. This would not constitute an optimal design, how-
ever, and in multivariate problems can be extremely impractical.
Although the differences in results achieved using some of these
methods (Table 1) may seem small or trivial for this application,
many other applications that have limited physical space for ad-
justability or high costs for added adjustability benefit greatly
from optimized solutions.

The discrepancy between the first two methods (Manikin-
k and Manikin-ANSUR), which equate hip height with selected
seat height, arises from the fact that there is not a perfect correla-
tion between hip height and stature across the entire population.
There is considerably more variability in hip height than indi-
cated by using stature and proportionality constants. It is inter-
esting to note that the Manikin-ANSUR method provided nearly
95% accommodation with little effort (i.e., no experiment needed
to be run). However, this is a rare occurrence and attributable to
the simple and univariate nature of this design problem. While
the idea of modeling a large population with a very small set of
manikins is an attractive one, the large amounts of variance that
are not explained by body size or geometric constraints make it
impractical. This finding is consistent with those in other studies
involving more complex problems [23, 18].

Since the Population and Hybrid-mean methods are based
upon functional models in which the preferred seat heights were
measured, one might anticipate those values to better represent

the required adjustability. Additionally, since the behavior is
measured directly, no assumptions (e.g., riders will select a seat
height such that their heels can reach the floor) are required. Due
to the simplicity of the problem and the relative similarities be-
tween the sample and target user (ANSUR) populations, the Pop-
ulation method predicted accommodation well. This is to be ex-
pected. Problems with population models arise in two situations:
1) when designers try to use a model gathered on one population
to predict accommodation for another; and 2) when designers try
to consider other factors simultaneously. For example, models
predicting preferred handle bar location and preferred seat loca-
tion might work well independently, but the results can not be
combined to predict both [4].

The effect of including the residual variance is seen in the
Hybrid-ResVar method. Since the regression model relating
stature to seat height has an R? value of 0.41, 59% of the vari-
ance in seat height cannot be explained by stature. The effects of
preference are clearly visible when comparing Figure 4, which
includes no preference, with Figure 5, which does. It shows that
when preference is included, for any particular stature, a variety
of seat positions might be chosen about a mean value. The ben-
efit of incorporating preference may be seen in the 12.5-percent
increase in accommodation from the Hybrid-mean method to the
Hybrid-ResVar method, corresponding to 125 additional people
from the virtual 1000-member sample.

Another way to think of the Hybrid-ResVar method is the
separation of user behavior into two quantifiable components:
that defined by anthropometry (measured by the slope of the
preference model regression) and that attributable to preference
(measured by RMSE). The interrelation of anthropometry and
preference may be easily examined by the shape and scatter of
the preference model. Sometimes, anthropometry may be a driv-
ing consideration, and in such cases, the model may exhibit a
steep slope with a high R? value. Other times, anthropometry
may have little impact on the problem, and the driving consider-
ation may instead be preference. In these cases, the model may
exhibit a very shallow slope with a low R? and lots of scatter. For
this example, the R? is 0.41, so anthropometry has a bearing on
the problem but preference is nearly as important.

Although the Hybrid-ResVar method illustrated here still re-
quires experimental tests, one advantage of the method is that
data from a relatively small sample of users evaluating physi-
cal prototypes can be used to make models that can be used for
quantitative analysis. In practice the sample population would
deliberately contain a diverse group of people, with care taken
to oversample the tails of the distributions of relevant parameters
(e.g., lots of short and tall people in this example).

This study has limitations. A larger, more diverse sample
would be required to validate the model across an entire popula-
tion. Further study will seek to enlarge the sample size, partic-
ularly in the tails of the anthropometric distribution. To include
females in the pool of prospective customers, data would need
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to be collected from a large sample of female users as well. The
inclusion of different types of bicycles would allow the model to
be extrapolated more broadly. The mode of adjustability should
also be improved, reconfiguring the cycle in such a way so as to
have continuous, rather than discrete, adjustment. The preferred
seat height was selected using a “quick sit” methodology. This
might correlate well with acceptability in a store or for a short
ride but is likely to differ from what might be selected for longer
duration rides. Additionally, the expertise of the rider was not
considered; it is likely that more experienced riders will select
relatively higher seat heights.

One could imagine that a design with more than one ad-
justable dimension experiences a compounding of the unex-
plained variance seen in this problem. Therefore, it is even more
important in such problems to include effects owing to prefer-
ence. Future work will further examine the effects of preference
on higher-dimensional problems. The notion of a “just noticeable
difference”, that is the degree to which a user could be disaccom-
modated without experiencing negative effects, and its impact on
preference and accommodation will also be investigated.

Recognizing that personal preference has a significant im-
pact on population accommodation is important in the design of
any device. This work shows that incorporating such variability
into traditional statistical models improves accommodation and
the confidence the engineer can have in their design.
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