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ABSTRACT
We propose a novel approach to shape optimization t

combines and retains the advantages of the earlier optimiza
techniques. The shapes in the design space are represente
plicitly as level sets of a higher-dimensional function that is co
structed using B-splines (to allow free-form deformations), a
parameterized primitives combined withR-functions (to support
desired parametric changes).

Our approach to shape design and optimization offers gr
flexibility because it provides explicit parametric control
geometry and topology within a large space of freeform shap
The resulting method is also general in that it subsumes m
other types of shape optimization as special cases. We des
an implementation of the proposed technique with attractive
merical properties. The effectiveness of the method is dem
strated by several numerical examples.

KEYWORDS: shape optimization, topology optimization
parametric design, level-set, implicit representation,R-functions,
shape sensitivity analysis

1 Introduction
1.1 Shape optimization: parametric vs free-form

A parametricshape is defined by a finite, and usually sma
set of geometric parameters called dimensions. Common
amples of dimensions include sizes, radii, distances, ang
and other geometrically meaningful design and/or manufac
ing variables. Most modern CAD systems represent shapes p
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metrically. Parametric shape optimization searches the sp
spanned by the design variables to minimize or maximize som
externally defined objective function. In other words, parametr
shape optimization is essentially asizingproblem that is a natural
extension of parametric computer-aided design.

The downside of parametric shapes is that they do not p
vide any explicit information about the geometry or topology o
the shape’s boundaries. This, in turn, leads to at least two wid
acknowledged difficulties: boundary evaluation may fail [48,25],
and topological changes in the boundaries may invalidate bou
ary conditions or the solution procedure [9]. A common ap-
proach to dealing with these difficulties is to restrict the desig
space to shapes with identical parameterization and topology
illustrated in Figure1.

(a) A simple shape is parame-
terized by three dimensions that
procedurally define the shape’s
boundary.

(b) Changes in parameter values
that result in a different topology
are usually not allowed.

Figure 1. Traditional parametric shape optimization and limitations.

In contrast to parametric shapes, afree-formshape is defined
by its boundaries without any prior explicit dimensional param
terization. Free-form shape optimization searches the space
free-form shapes by incremental local motion of the free-for
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boundaries. This seemingly precludes topological changes in
boundary. The difficulty is resolved by representing the shap
boundaryimplicitly in terms of level sets (isocurves or isosu
faces) of some higher dimensional time-varying hyper-surfa
Φ(x, t) [37]. Topological changes in level sets are captured
terms of smooth motions of the hyper-surface, while retaining
free-form nature of the shape’s boundaries. In particular, dir
movement of a level set surface has been used to represent
deformations of boundaries and to create holes during the o
mization process [54,3]. Figure2shows a typical shape deforma
tions allowed in a free-form shape optimization (with topologic
changes). Free-form shapes are usually parameterizedlocally by

Figure 2. Free-form deformation with topological changes can be repre-

sented by a moving level set hyper-surface.

polygonal approximations or in terms of some compactly su
ported basis functions (radial basis functions, B-splines, etc.
should be intuitively apparent that the space of free-form sha
is usually much larger than a typical space of parametric sha
However, without additional constraints, such free-form rep
sentations cannot be controlled in terms of global dimensio
parameters that are so critical in many design and manufac
ing applications. Consequentially, free-form optimization tec
niques often produce optimal solutions that may not be manu
turable. Because of this limitation, free-form shape optimizati
(with topological changes) is particularly useful at the concept
design stage.1 The output of free-form optimization is then trans
formed into detailed shape design, typically relying on heuris
shape processing techniques that may not be consistent with
original formulation of the optimization problem.

In this paper, we combine parametric and free-form sha
representations in a common unified representational framew
The new representation retains all the advantages of free-f
and parametric shapes, and supports parametric, free-form
hybrid types of shape optimization, with or without topologic
changes. The resulting shapes may have boundaries that are
tially free-form (thus allowing sufficiently large design spac
and partially parametric (thus providing control of the shape

1This observation also applies to all topology optimization methods, such
homogenization, which uses material models with micro-structures and s
an optimal layout over the design domain. Since we are mainly focusing
shape optimization at the macro (geometry) level, we refrain from discussing
topology optimization methods based on material distributions.
2
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terms of meaningful geometric parameters). The key unifyin
concept is that of an implicit representationΦ(x, t) that is para-
meterized locally in terms of B-spline functionsand/or glob-
ally in terms of dimensional parameters. We show that suc
a representation may be constructed usingR-functions [30, 39]
that transform any set-theoretic construction into a sufficient
smooth hyper-surface via simple syntactic substitution.

We discuss the implementation of the proposed approach
a meshfree environment developed by the authors [46, 49] and
demonstrate its performance by applying it to a widely studie
minimum compliance structural shape optimization problem.

1.2 Related work
Parametric shape optimization is a well researched area t

is discussed in many references [16, 9, 22] and is subject to the
limitations discussed above.

Free-form shape optimization has also been studied exte
sively, with numerous advances during the last decade focus
on handling topological changes. To allow topological change
of the shape, early methods explicitly move the shape’s boun
ary and introduce holes in the domain to accommodate topolo
ical changes. For example, evolutionary structural optimizatio
(ESO) method [56], Bubble method [11], topological sensitivity
analysis based method [15]. Recently proposed level set meth-
ods in shape optimization have attracted much attention, due
their ability to track evolving boundaries and handle topolog
cal changes [37]. In [38], the shape is represented as a leve
set of a higher dimensional surface and a structural optimizati
problem is formulated and solved on this higher-dimensional su
face. Holes can be created during the optimization process
modifying the surface, based on criteria that are similar to tho
used by other evolutionary methods. Shape sensitivity analy
in [2] and [52] show that the level-set speed function may b
chosen to guarantee a descent direction of the objective fun
tion, which gives mathematical guidance on how to move th
boundary. However, it has also been observed that motions of
level-set surface based on shape sensitivity alone do not app
to nucleate holes inside the domain [2]. In fact, this is not sur-
prising, because the shape sensitivity analysis is based on sm
perturbations of the boundary, and therefore does not provide
mechanism for sudden topological changes such as nucleation
holes. In order to overcome the topological limitations in prac
tice, many small holes are often inserted into the initial desig
and are allowed to merge under boundary motion, but the r
sult of optimization appears to depend on the initial distributio
of holes [2, 38, 52]. Another approach to handling topological
changes with level sets is described in [54], where the authors
use radial basis functions to represent the level set surface a
extend the boundary velocity of the shape to the entire doma
The authors in [3] represent level-set function by finite elemen
shape functions and rely on a heuristic criterion to perform sha
Copyright c© 2006 by ASME
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and topology optimization. The concept of topological derivat
has been proposed to overcome the difficulty of generating i
rior holes [7,1,53] and appears to be promising, but is not ful
developed at this time.

The above efforts (along with many others) have made s
nificant contributions to the area of structural shape/topolo
optimization. But until now, free-form shape optimization an
parametric optimization have been treated as separate and m
ally exclusive techniques in shape design. Our approach bu
on earlier approaches using level sets, and shares some sim
ities with [54] and [3], but also incorporates full power and ad
vantages of parametric shape optimization.

1.3 Outline
The rest of the paper is organized as follows. In Section

we introduce the proposed shape representation method an
plain its advantages. In Section 3, a minimum strain energy sh
optimization problem is formulated using the proposed repres
tation technique. Section 4 develops the optimization algorit
and shape sensitivity analysis for the formulated problem.
Section 5, we illustrate the generality and flexibility of the pr
posed method to shape control during the optimization proc
numerical examples are given to demonstrate the correctnes
effectiveness of the proposed method. Section 6 discusses th
merical implementation issues, followed by conclusions in S
tion 7.

2 Shape Representation
We propose to represent both free-form shapes and para

ric shapes implicitly using level sets of higher-dimensional fun
tions (hyper-surfaces) and use the theory ofR-functions to repre-
sent arbitrary set combinations of such shapes. The key obse
tion is that the space of level set functions that are differentia
almost everywhere is closed underR-functions [45].

2.1 Implicit Representations of Shapes
Implicit representations of shapes have a long tradition

geometric modeling and computer graphics, as described in
eral recent books [6,51]. All such representations define a sha
Ω ⊆ D implicitly in terms of non-negative values of some fun
tion Φ(x) of the spatial variablex as Ω = {x ∈ D |Φ(x) ≥ 0},
whereD is some predefined reference domain that contains
possible shapesΩ of interest. The boundary∂Ω of the shapeΩ
is the zero level set of the function∂Ω = {x∈ D |Φ(x) = 0}.

This definition is consistent with the notion of level set fun
tion in [37,38,2,54,52,3], but also includes many other represe
tations used in geometric modeling. Many techniques and tra
formations for constructing such representations are descr
in [6], including Ricci’s function [28], theory of R-functions
[30, 31, 39, 40], and convolution methods. More recent notab
3
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methods include exact and approximate distance fields [14, 5],
blending of implicit primitives like blobs, spheres, quadrics, and
local quadratics that have been fit to the points [21, 20, 24], ra-
dial basis functions with both global [50] and compact support
[35, 19], and multi-variate B-splines to represent scalar fields
whose zero-sets represent the boundary of sculpted geome
[26,36]. Implicit representations may be constructed from both
Constructive Solid Geometry and Boundary Representations o
geometric objects [40,42,43]. Although implicit representations
lack explicit boundary information [44], we will show in Section
6 that our implementation does not require it.

2.2 Parametric and Free-form Primitive Shapes
A shape optimization process is an iterative procedure

where the shapeΩ and its implicit representation can be con-
sidered as time-dependent functionsΩ(t) andΦ(x, t).

A parametric level-set of a functionΦ(x, t) is parameterized
in terms of geometrically meaningful variables{bi}. Familiar
examples of implicitly defined parametric shapes include conic
sections and quadric surfaces, super-ellipses and super-quadri
tori, as well as local and global transformations of these simple
shapes [6]. The corresponding functionsΦ for these primitive
shapes are well known. The geometric parameters (radii, foca
distances, angles, positions, etc.) of these implicit represent
tions serve as time-dependent design variables that evolve durin
the search for optimal shape. We will useΦp(x,b(t)) to denote
the level-set functions for parametric shapes, wherex is the spa-
tial variable andb(t) = {b1(t),b2(t), . . . ,bM(t)} is the set of geo-
metric parameters. Parametric implicit representations for mor
complex shapes can be built from primitive shapes using a var
ety of blending, convolution, and set-theoretic techniques [6,46].
If the implicit functionΦp(x,b(t)) is constructed from two prim-
itive implicit representationsΦ1

p(x,b
1(t)) andΦ2

p(x,b
2(t)), then

the vector of parametersb is simply an (ordered) union ofb1 and
b2.

A free-form implicit representation relies on a function
Φ(x, t) that is constructed as a linear combination of basis func
tions{χi(x), i = 1, . . . ,N} from some complete space:

Φ(x, t) =
N

∑
i=1

ci(t)χi(x) (1)

The associated (free-form) shape optimization problem is to de
termine the unknown coefficients{ci(t)} for an optimal shape.
The term “free-form” is consistent with the fact that the para-
meters{ci} do not have intuitive geometric meaning. Popu-
lar choices of the basis functions{χi(x)} include polynomials,
trigonometric, B-splines, radial basis functions, etc. For our
implementation we chose multivariate B-splines on a uniform
grid subdividing the reference domainD because of their well-
Copyright c© 2006 by ASME



r

s

-
s
i

n

n

e

e

f

n

h

.

on
-
y

d
-
-
es.

-

e
d
.

.

understood smoothness and local control properties [10]. The lo-
cal control is particularly useful for performing local shape defo
mations and for forcing or disallowing some topological change
by manipulating a particular subset of the coefficients. A free
form implicit representation (1) parameterizes the shape in term
of the coefficients{ci} of basis functions{χi(x)}. This parame-
trization effectively transforms the difficult free-form shape opti
mization problem into an easier problem of “sizing” coefficient
{ci}. To distinguish free-form representations from parametr
ones, in the remainder of the paper, we will useΦ f (x,c(t)) to
denote the implicit functions for free-form shapes, wherex is the
spatial variable andc(t) = {c1(t),c2(t), . . . ,cN(t)} is the set of
B-spline coefficients.

2.3 Composition of level-set functions with R-
functions

Complex geometric shapes can be constructed usi
Boolean set operations∩ and∪. For example, the geometric
domain in Figure3(a) is described by the Boolean expressio
Ω = (Ω1∩Ω2)∩Ω3, whereΩi , i = 1,2,3 are primitives shapes
represented implicitly by the corresponding level-set function
Φi :

Φ1(x,y) = b2−y2 ≥ 0;

Φ2(x,y) = a2−x2 ≥ 0;

Φ3(x,y) = (x−xc)
2− (y−yc)

2− r2 ≥ 0

More generally, most shapes in geometric modeling belon
to the class of semi-analytic sets that, by definition, can be co
structed using logical operations on equalities and inequaliti
with analytic functions [27, 44]. Constructive Solid Geometry
representations rely on such logic expressions explicitly, but th
can also be constructed automatically from a variety of other re
resentations [47,41,42].

While such Boolean expressions are perfectly adequate
most geometric computations, they cannot be differentiated. R
call that differential properties of the level-set functionΦ are
essential for shape sensitivity analysis. Fortunately, the th
ory of R-functions allows to translate any logical composition
of level-set functions into a single sufficiently smooth functio
via straightforward syntactic substitution.R-functions are real-
valued functions whose signs are completely determined by t
signs of their arguments [29, 39, 40]. They were discovered by
Rvachev who developed the theory specifically for solution o
boundary value problems in mechanics [31, 32]. For example,
multiplicationxy of two argumentsx andy is anR-function be-
cause it is positive only whenx andy are both positive or nega-
tive. Considering the sign of a function as its “logical” attribute
the relationship between logical expressions andR-functions be-
comes apparent; for example, multiplication corresponds to t
logical equivalence operation. In fact, every Boolean functio
corresponds to a space ofR-functions, but they can be studied
4
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and classified in terms of their logical and differential properties
Properties of the most popularR-functions have been studied ex-
tensively in [30,31,39,45]. A popular system of these functions
includes:

f1∧0 f2 ≡ f1 + f2−
√

f 2
1 + f 2

2 ;

f1∨0 f2 ≡ f1 + f2 +
√

f 2
1 + f 2

2 (2)

It is easy to check thatf1∧0 f2 is positive if and only if both
f1 and f2 are positive; likewise,f1∨0 f2 is positive if and only
if f1 or f2 are positive. In addition, these functions are analytic
everywhere except wheref1 = f2 = 0. UsingR-functions, any set
theoretic expression can be translated into a real-valued functi
by syntacticallyreplacing Boolean operations by the correspond
ing R-functions. This is one of the major outcomes of the theor
of R-functions.

The composition of primitive implicit representations byR-
functions is another implicit representation that is parameterize
by the union of parameters in the primitives. Furthermore, topo
logical changes in the level sets of the composite function corre
spond precisely to the changes in the respective parameter valu
For example, Figure3 (b-d) shows the isolines of the composite
function (positive part) corresponding to the set-theoretic con
structionΩ = Ω1∩Ω2∩Ω3 in Figure3(a)with different values
for the geometric parameters{a,b, r,xc,yc}. Significant shape
changes are obtained without any additional effort to track th
boundary movement or topological changes. All geometric an
topological information is implied by the geometric parameters

(a) Parametric shape defined as
Ω = Ω1∩Ω2∩Ω3.

(b) (c)

(d) (e)

Figure 3. Parametric shape deformations corresponding to changes in

values of geometric parameters

The above approach withR-functions supports composi-
tion of arbitrary parametric and free-form level-set functions
Suppose we already have implicit representations forK f free-

form shapes
{

Φ1
f , . . . ,Φ

K f
f

}
, and a collection ofKp paramet-

ric shapes
{

Φ1
p, . . . ,Φ

Kp
p

}
. Each primitive free-form function is

defined by a linear combination of some basis functionsΦk
f =
Copyright c© 2006 by ASME



n

i
n

i

n

t
om-
ow

ry.
Φk
f (x,c

k(t)) = ∑Nk
i=1ck

i (t)χk
i (x) for k = 1, . . . ,K f , and each para-

metric function is parameterized in terms of geometric parame
ters asΦk

p = Φk
p(x,bk(t)) for k = 1, . . . ,Kp. If a composite shape

is defined using some Boolean function of all free-form and para
metric primitives, then the composite level-set function is im-

mediately obtained asΦ(x, t) = Φ
(

Φ1
f , . . . ,Φ

K f
f ,Φ1

p, . . . ,Φ
Kp
p

)
,

whereΦ is anR-function corresponding to the Boolean function.
Figure4(b)shows a plot of the constructed level-set function

(positive part) for the geometric domainΩ = Ω1∩Ω2∪Ω3 in
Figure4(a). Ω1 is a free-form shape,Ω2 is a rectangular hole
andΩ3 is a circular disk attached toΩ1.

(a) A two dimensional free-form
shape combined with two para-
metric shapes.

(b) The implicit function con-
structed using R-functions.

Figure 4. Using R-functions to combine free-form and parametric

shapes.
The constructed implicit representation allows a large clas

of shapes and shape deformations, accommodating a wide ran
of implicit modeling techniques. The topological changes ca
be handled naturally for both free-from shapes and parametr
shapes. The resulting level-set functions are differentiable, a
lowing rigorous shape sensitivity analysis and supporting man
gradient-based optimization methods. Last, but not least, we w
show that the constructed representation provides flexibility i
using parametric design features directly with shape optimiza
tion, for example, as obstacles, attachments, to enforce exa
geometric requirements, etc.

3 Optimization problem formulation
In the rest of this paper, we will study a particular shape

optimization problem in order to illustrate the capability of the
proposed representation in shape design. The new represen
tion supports a variety of design problems and design optimiza
tion methods with provable properties. For concreteness, we w
demonstrate it on a compliance minimization problem with vol-
ume constraint that has been studied by others and is well u
derstood. But we stress that our approach can also be applied
other structural optimization problems with similar benefits.

We assume that the shapeΩ we seek is contained within a
given domainD, Ω ⊆ D. The shapeΩ with boundaryΓ = ∂Ω
5
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is the optimal shape for the following compliance minimizatio
problem:

Minimize J0(u) =
ZZ

Ω

1
2

Ei jkl εi j (u)εkl(u)dΩ

sub ject to: a(u,v) = l(v), ∀v∈U

u|Γ1 = u0ZZ
Ω

dΩ = V0 (3)

wherea(u,v) = l(v) is the equilibrium equation,a(u,v) =RR
Ω Ei jkl εi j (u)εkl(v)dΩ, l(v) =

RR
Ω f vdΩ +

R
Γ2

pvdΓ. The
boundaryΓ = Γ1 + Γ2, Dirichlet boundary conditionu = u0 is
specified onΓ1 and boundary tractionp is specified onΓ2, f is
the body force.u is the displacement field,E is Young’s modulus
andε is elastic strain,v is the virtual displacement andU is the
space of all admissible displacements.

RR
Ω dΩ =V0 is simply the

volume constraint.
We represent the shapeΩ as a level set of a higher-

dimensional functionΦ(x, t) that evolves over timet so that





x insideΩ, if Φ(x, t) > 0
x on Γ, if Φ(x, t) = 0
x outsideΩ, if Φ(x, t) < 0

. (4)

If we use the following characteristic function

H(Φ(x, t)) =
{

1, if Φ(x, t)≥ 0
0, if Φ(x, t) < 0

, (5)

as an indicator of whether a given point belongs toΩ or not,
we have

Ω = {x|x∈ D,Φ(x, t)≥ 0}= {x|x∈ D,H(Φ) = 1}. (6)

We emphasize thatΦ(x, t) is a general level set function tha
can represent free-form shapes, parametric shapes or any c
binations of both. The shape design space is determined by h
this level set function is constructed and how it is allowed to va
Following [3,52], we can reformulate Problem (3) as the follow-
ing:

Minimize J0(u,Φ) =
ZZ

D

1
2

Ei jkl εi j (u)εkl(u)H(Φ)dΩ

sub ject to: a(u,v,Φ) = l(v,Φ), ∀v∈U

u|Γ1 = u0ZZ
D

H(Φ)dΩ = V0 (7)

where

a(u,v,Φ) =
ZZ

D
Ei jkl εi j (u)εkl(v)H(Φ)dΩ (8)

l(v,Φ) =
ZZ

D
[ f v+div(pvn)]H(Φ)dΩ. (9)
Copyright c© 2006 by ASME
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Note that the tractionp is only defined over the traction
boundaryΓ2, but in Expression (9), we have an integral o
div(pvn) over the entire domain D [2]. Thus, the tractionp must
be extended from the boundary to D. This can be accomplis
for example, using transfinite interpolation with approximate d
tance fields as described in [34].

The level set function in Problem (7) can be constructed by

Φ(x, t) = Φ(Φ1
f , . . . ,Φ

K f
f ,Φ1

p, . . . ,Φ
Kp
p ), (10)

where eachΦk
f (x, t) = Φk

f (x,c
k(t)) = ∑Nk

i=1ck
i (t)χk

i (x), k =
1, . . . ,K f , is an implicitly represented free-form shape, and ea
Φk

p(x, t) = Φk
p(x,b

k(t)), k = 1, . . . ,Kp, is an implicitly repre-
sented parametric shape.

By using Expression (10), the original shape optimization
formulation as in Problem (3) becomes a fully parameterized o
timization formulation as in Problem (7) where the parameter
are the coefficients of B-spline basis functions{ck

i , i = 1, . . . ,Nk}
in Φk

f (x,c
k(t)), k= 1, . . . ,K f , and geometric dimensions{bk

j , j =
1, . . . ,Mk} in Φk

p(x,bk(t)), k = 1, . . . ,Kp. This parameterization
applies to the level set surfaceΦ(x, t) instead of the shape itsel
allowing topological changes in the shape without the need
track the shape’s boundary.

4 Optimization Procedure
Many optimization methods can be used to solve the pr

lem. Since an equality volume constraint is usually difficult
enforce during the optimization process, we use the augme
Lagrangian multiplier method, which is well understood and
widely used (for example, see [23]). By imposing the volume
constraint as a penalty term in the objective function, we ob
the following formulation:

Minimize J(u,Φ) = J0(u,Φ)+λ
(ZZ

D
H(Φ)dΩ−V0

)

+
1
2γ

(ZZ
D

H(Φ)dΩ−V0

)2

sub ject to: a(u,v,Φ) = l(v,Φ), ∀v∈U

u|Γ1 = u0, (11)

whereλ is the Lagrangian multiplier andγ is a pre-defined
parameter (typically a very small number). At each iterati
we fix λ and solve Problem (11) for Φ, then we updateλ and
check for termination criteria. If the termination criteria are n
satisfied, we go to the next iteration.

Because the implicit functionΦ is fully parameterized, solu
tion of Problem (11) reduces to searching for an optimal shape
the design space spanned by parameters{ck

i } in Φk
f and{bk

j} in

eachΦk
p. The differentiability ofΦ supports rigorous sensitivity

analysis as described in Section4.2.
6
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4.1 Algorithm
To solve the augmented Lagrangian multiplier subproble

in (11), we use an iterative gradient search method: in each ite
ation, we find a descent direction (where the objective functio
decreases) and move the design variables along this descen
rection. In the following, we state a generic algorithm for solvin
Problem (7) considering the most general case: combination o
free-form and parametric shape optimization. The algorithm ca
handle many special cases by updating a chosen subset of
design variables during the optimization process. The basic
gorithm consists of the following steps:

1. Initialize the implicit function Φ(x,0) and stepsize∆t,
chooseλ andγ.

2. Solve the augmented Lagrangian multiplier subproble
Problem (11)

(2.1) Solve the equilibrium equation.
(2.2) Fora chosen setof parameters,

(2.2a) Calculate derivativesdci(t)
dt and

dbj (t)
dt .

(2.2b) Update the parametersci(t) = ci(t)+
dci(t)

dt ·∆t and

b j = b j +
dbj (t)

dt ·∆t

(2.3) Check termination criteria for the subproblem. If no
satisfied, go to(2.1). The termination criteria is de-
fined as|∆J| ≤ ε, whereε is a predefined small positive
number.

3. Update Lagrangian multiplierλ = λ+ 1
γ (
RR

D H(Φ)dΩ−V0)
4. Check termination condition. If not satisfied, go to1. The

termination criteria is defined as|∆λ| ≤ δ, whereδ is a pre-
defined small positive number.

This generic algorithm can handle both free-form an
parametric shape optimization problems. If only free-form
shape optimization is desired, we may only useΦ f (x,c(t)) =
∑N

i=1ci(t)χi(x) to represent the shape. If pure parametric shap
optimization is preferred,Φp(x,b(t)) may be used. The algo-
rithm also supports additional control of topological events an
how the parametric shapes may be used. For example, if nuc
ation of holes inside the domain is undesirable, we may choo
to perform the sensitivity calculation and update only those par
meters that affect the shape’s boundary. Or if parametric shap
are used as obstacles, we may simply force the geometric pa
meters to be constant. These additional controls provide mu
flexibility in shape optimization. We will illustrate these features
of the proposed method in Section 5.

4.2 Sensitivity analysis
The full parameterization of the shape optimization problem

transforms it into a sizing problem which has two set of desig
variables: one is the coefficients of the B-spline basis function
the other is the geometric dimensions. Because the construc
Copyright c© 2006 by ASME
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level set functionΦ is differentiable we can perform rigorous the
sensitivity analysis for Problem (11). Since the number of these
parameters is typically large (mainly because of the number
B-spline coefficients), for simplicity, we transform the sensitiv
ity with respect to each design variable (coefficient or geomet
dimension) to sensitivity with respect to time since each des
variable can be regarded as a time-dependent function.

The results of sensitivity analysis are summarized in the f
lowing Lemma and Theorems. Lemma4.1shows the time deriv-
ative of the objective function in Problem (11) for a genericΦ.
With the parameterization ofΦ, Theorems4.2, 4.3, and4.4 de-
rive explicit expressions for shape sensitivities and establish h
to compute the descent direction for the objective function
case of free-form, parametric, or combined shape optimizat
respectively. The proofs of all results are provided in [8].

Lemma 4.1. For Problem (11), the time derivative of the ob-
jective function is

dJ(u,Φ)
dt

=−
Z

∂Ω

dΦ
dt

RdΓ, (12)

where

R= − f u−div(pun)+
1
2

Ei jkl εi j (u)εkl(u)

−λ− 1
γ

(ZZ
D

H(Φ)dΩ−V0

)
. (13)

Theorem 4.2. (Free-form shape optimization)In Problem
(11), if Φ(x, t) = Φ f (x,c(t)) = ∑N

i=1ci(t)χi(x), then

{
dci(t)

dt
=
Z

∂Ω
χi(x)RdΓ, i = 1, . . .N

}
(14)

is a descent direction of Problem (11).

Theorem 4.3. (Parametric shape optimization)In Problem
(11), if we haveΦ(x, t) = Φp(x,b(t)), then

{
dbj(t)

dt
=
Z

∂Ω

dΦp(x,b(t))
dbj

RdΓ, j = 1, . . .M

}
(15)

is a descent direction of Problem (11).

In the general case, the boundary∂Ω of the shape is de-
fined by the zero level set of the composite functionΦ(x, t) =
Φ(Φ1

f , . . . ,Φ
K f
f ,Φ1

p, . . . ,Φ
Kp
p ). The boundary∂Ω consists ofK f +

Kp pieces,Γk
f = ∂Ω∩ ∂Ωk

f , k = 1, . . . ,K f , andΓk
p = ∂Ω∩ ∂Ωk

p,
k = 1, . . . ,Kp. When every point on∂Ω belongs to the bound-
ary of exactly one primitive, a basic result from the theory
R-functions states that the derivative of the functionΦ on the
7

f

boundary∂Ω is determined by the derivative of the primitive
level set function defining that portion of the boundary. Th
allows us to decouple the derivative ofΦ into derivatives of indi-
vidual primitives (see proof in [8]).

Theorem 4.4. (General case)In Problem (11), if Φ(x, t) =
Φ(Φ1

f , . . . ,Φ
K f
f ,Φ1

p, . . . ,Φ
Kp
p ), and almost every point of∂Ω be-

longs to the boundary of exactly one primitive, then
{

dck
i (t)
dt

=
Z

Γk
f

χk
i (x)RdΓ, i = 1, . . .Nk

}
, k = 1, . . . ,K f (16)

and
{

dbk
j(t)

dt
=
Z

Γk
p

dΦk
p(x,b

k(t))

dbk
j

RdΓ, j = 1, . . .Mk

}
,k = 1, . . . ,Kp

(17)
is a descent direction of Problem (11).

Theorems4.2and4.3are special cases of the last, most ge
eral, Theorem4.4. In an unlikely situation that the condition in
Theorem4.4does not hold, i.e. boundaries from different prim
itives may become coincident, the derivative on the overlappi
boundaries becomes indeterminate. The ambiguity may be
solved in several ways, for example, by perturbing the boun
aries or by making additional assumptions about the primitive
behavior at the boundary.

5 Shape control with numerical examples
We now demonstrate shape optimization with parametr

free-form, and topological controls in various combinations, d
pending on particular design preferences. The design variab
(B-spline coefficients and/or geometric dimensions) are upda
based on the sensitivity analysis shown in Section 4.2. Obse
that the right hand side of Expression (14) is zero if support of
a particular functionχi(x) does not intersect the boundary. Thi
is to be expected in the case of a free-form shape optimizat
because the changes in shape are defined in terms of moving
existing boundaries, and is consistent with [16]. It also means
that a direct implementation of Expression (14), while theoret-
ically well founded, does not allow changes in topology. W
therefore propose an update strategy that permits the evolutio
all parameters{ci(t)}, including those in the interior. Observing
that Expression (14) is simply a measurement of the total effec
of the integrand function over the boundary, we define the n
updating criteria as the average value of functionRover each in-
dividual B-spline’s support. This is consistent with (14) when the
domain is replaced by the boundary, and the integrand funct
R is well defined at all interior points. In this sense, the propos
strategy is an extension of the sensitivity based approach imp
by Expression (14). The numerical results for a short cantileve
beam design problem (see Figure5) are used here to illustrate
Copyright c© 2006 by ASME
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the effectiveness of the proposed method. If not specified,
volume constraint is half the area of the design domain. The f
lowing parameters are consistently assumed in the examples
Young’s elasticity modulusE = 1, Poisson’s ratioν = 0.3, the
domainD is of size0.1×0.05, a distributed forcep = 200is ap-
plied in a interval of 0.005 around the middle point of the righ
edge ofD and the left edge ofD is fixed, the body forcef = 0.
The numerical implementation details are described in the n
section.

Figure 5. Definition of the minimum compliance problem for a short can-

tilever beam.

Case 1: Free-form, without nucleation of holesIn case of pure
free-form shape design, we only have the B-spline coefficie
{c1,c2, . . . ,cN} as design variables. Only the coefficients of tho
B-splines whose support intersect the boundary are updated.
ure 6 shows the results at different stages of the optimizati
process. (The color map shows the distribution of strain ene
in this example and all examples that follow.)

(a) Initial design (b) Iteration 60 (c) Iteration 141

Figure 6. Strain energy distribution of the shapes at different iterations

from the free-form shape optimization process without nucleation of holes.

Only the coefficients of those B-spline basis functions that have support

intersecting the boundary are updated. Grid size = 100×50.

Case 2: Free-form, with topological changesIn this case, all
the B-spline coefficients are updated to allow nucleation of ho
in the interior of the domain. Figure7 shows the results at differ-
ent stages of the optimization process.

(a) Iteration 28 (b) Iteration 40 (c) Iteration 111

Figure 7. Strain energy distribution of the shapes at different iterations

from the free-form shape optimization process with nucleation of holes.

Every B-spline coefficient is updated during the optimization process.

Grid size = 100×50.
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Case 3: Parametric, with or without topological changesFor
pure parametric design, the design variables are geometric
rameters{b1,b2, . . . ,bM}. We use Theorem4.3 to update these
parameters. Figure8 shows the optimal shape of a rectangle wi
a circular hole, with the position of the hole as the only desi
parameter. Figure9 shows the optimal shape of a rectangle with
circular hole and a rectangular slot, where positions of both h
and slot are used as design variables. Due to the nature of
design problem, no volume constraint is imposed for these t
examples. The topological changes, such as intersection of h
and the slot, are handled easily without any additional effort.

(a) Initial design (b) Result at iteration 9

Figure 8. Strain energy distribution of the initial and optimal shapes of a

rectangle with a circular hole. The design variables are the position of the

hole. Grid size = 50×25.

(a) Initial design (b) Result at iteration 21

Figure 9. Strain energy distribution of the initial and optimal shapes of

a rectangle with a circular and rectangular slot. The design variables are

the positions of the hole and the slot. Grid size = 50×25.

Case 4: Free-form and parametric, without nucleation of
holesIn this case, both the B-spline coefficients{c1,c2, . . . ,cN}
and geometric parameters{b1,b2, . . . ,bM} are used as design
variables. To prevent nucleation of holes, we only update
boundary B-spline coefficients (as in Case 1) and geometric
rameters. Figure10shows the example of a moving circular hol
inside the domain where the position of the hole needs to be
timized.

(a) Iteration 40 (b) Iteration 80 (c) Iteration 135

Figure 10. Strain energy distribution at different iterations during the op-

timization process for free-form shape with a circular hole. Grid size =

100×50.

Case 5: Free-form and parametric, with topological changes
Just as in Case 2, every B-spline coefficient is updated

allow nucleation of holes. Geometric parameters are update
Copyright c© 2006 by ASME
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optimize the parametric shapes. Figure11 shows the results at
different stages of the optimization process for a shape with a
cular hole and a rectangular slot. In this example, we protect
parametric shapes throughout the optimization process (wh
means the circular hole remains circular and the rectangular
remains rectangular). This is achieved by simply placing a tol
ance zone around each parametric shape and force the B-s
coefficients inside the tolerance zone to be positive.

(a) Initial design (b) Iteration 30 (c) Iteration 40

(d) Iteration 60 (e) Iteration 80 (f) Iteration 134

Figure 11. Strain energy distribution at different iterations during the op-

timization process for free-form shape with a circular hole and a rectan-

gular slot. Nucleation of holes is allowed. Grid size = 100×50.

Case 6: Parametric features as obstacles or attachmentsFig-
ure 12 shows the optimal shape with a circular hole as a mo
ing obstacle. Figure13 shows the optimal shape with a circula
disk as a fixed attachment. The obstacle can be combined
free-from shape design using the intersection operation while
attachment can be implemented by the union operation.

(a) Initial design (b) Optimal shape

Figure 12. Strain energy distribution of the initial and optimal free-form

shape with a circular hole as a moving obstacle. Grid size = 50×25.

(a) Initial design (b) Optimal shape

Figure 13. Strain energy distribution of the initial and optimal free-form

shape with a disk as an attachment. Grid size = 100×50.
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6 Implementation
The proposed approach to shape optimization can be im

mented in many environments that support stress/strain anal
allow some programmability for parametric functions, and pr
vide tools for differentiation, and boundary and volume integ
tion. A potentially challenging task that is likely to dominat
any implementation is numerical integration over an evolving
priori unknown) geometric domainΩ. The task makes imple-
mentation with finite elements challenging because, as the sh
changes, it would require either frequent remeshing or (re)
proximation of the domain by piecewise linear functions.

6.1 Meshfree approach with distance fields
The meshfree method with approximated distances

scribed in [13] is based on the original idea by Kantorovich [18]
for solving simple Dirichlet problems, but was fully develope
by Rvachev and his students for general boundary conditions
problems [31, 32]. To paraphrase Rvachev, a physical field c
be represented by a generalized Taylor series by powers o
approximate distance field to the boundary [31,33].2 Once such
distance fields are constructed, they can be used to construc
lutions to boundary value problems that satisfy the prescrib
boundary conditions exactly on all points where the distan
field vanishes. The remainder term in the Taylor series conta
degrees of freedom necessary to approximate differential eq
tion(s), and it also assures completeness of the solution [33]. The
method is essentially meshfree, though a background mesh
be used for integration and visualization purposes. A restric
implementation of the method with WEB-Splines is describ
in [17], and a complete programming environment supporti
construction, differentiation, and integration of all required fun
tions at run time is described in [49] and was used to implemen
the proposed approach to shape optimization.

6.2 Solution procedure
In the context of the structural analysis problem solved

this paper, we represent components of the displacement ve
u = (u1,u2) as products of two functionsui = ωiΨi , i = 1,2,
where ωi are distance functions to the fixed portions of th

boundary of the domainΩ, and functionsΨi =
k
∑
j=1

aΨi
j ξ j are lin-

ear combinations of basis functions used to approximate solu
of the differential equation. Generally, these basis functions
be defined on a grid that does not conform to the geometric
main and arenot related to the basis functions used to constru
the level set functionsΦi . In this paper we approximated compo
nents of the displacement vector using uniform cartesian grid

2Rvachev does not use distance fields directly but employs so called “norm
ized functions” that are constructed using theory ofR-functions [31]. With that
terminology, a level set function is 0-th level approximation of a distance fr
any particular level set. Copyright c© 2006 by ASME
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bilinear B-splines. Numerical values of the coefficientsaΨi
j are

determined by a standard technique that requires minimizat
of an energy functional [55]. As a result we obtain a system o
linear algebraic equations whose solution gives numerical val
of the coefficientsaΨi

j . Assembly of the matrix and vector of
this system of equations requires differentiation of the appro
mate distance fieldsωi and basis functions with respect to spatia
coordinates and integration over non-meshed geometric dom
and its boundary that is represented by a level set function. O
numerical values of the coefficientsaΨi

j are computed, they are
substituted into expressions for components of the displacem
vectoru.

The free-form level set function is initialized as a B-splin
surface with constant coefficients over the rectangular domain
is then combined with the parametric shapes to obtain the ini
level set functionΦ usingR-conjunction and/orR-disjunction as
appropriate. At each step of optimization, the structural proble
is solved using the meshfree method as described above.
value ofR in Expression (13) is computed from the solution field,
then the derivatives{dci(t)

dt } can be directly calculated from Ex-

pression (16). Note that the derivatives{dbj (t)
dt } require boundary

integration. The integrand in Expression (17) is available since
the derivatives of{dΦp

dbj
} can be easily calculated from the ex

plicit expression of parametric level set functions. The bounda
of each parametric shape is known a priori, however some po
of the parametric boundary may not lie on the boundary of t
final shapeΩ. For example, in Figure9 only a portion of the
circle is a subset of the boundary after the circle and the rect
gle merge. The boundary points are identified through a sim
point membership test against the implicitly represented level
Φ = 0. This eliminates the need to track parametric boundar
– a difficult task associated with traditional parametric optimiz
tion.

6.3 Dependence on grid size
The algorithm converges rapidly and smoothly to (loca

minima for the examples shown in Section 5. For problems th
involve free-form boundaries and allow topological changes, t
results are clearly dependent on the number of B-splinesχi(x)
used to represent the free-form componentΦ f of the shape. Fig-
ure14 shows three different shapes resulting from the same
timization problem that also produced the shape in Figure7,
but with different grids of B-splines:50× 25, 100× 50 and
200×100. Although the final shapes are very different, the va
ues of the objective function are very close to each other. Fig
15 shows the values of the objective function and the area rat
for the shapes during the optimization process for the three g
sizes.The observed grid dependence should be expected, sinc
is well known that the original shape optimization problem (3)
is not well posed as stated [12, 4]. Without changing the struc-
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(a) 50×25grid (b) 100×50grid (c) 200×100grid

Figure 14. Strain energy distribution of the optimal shapes from different

grid size in the free-form shape optimization with nucleation of holes.

(a) The area ratio during opti-
mization process

(b) The strain energy during optimiza-
tion process

Figure 15. The area ratio and strain energy during optimization process

for different grid size.

ture volume, introduction of more holes will generally increa
the efficiency of the structuread infinitum. The size of the grid
defines the number of B-splines, which serve as degrees of f
dom for the level set surface, and is directly related to the m
imum number of possible holes. If we disallow introduction
new holes, the grid dependence disappears (Figure16shows two
similar shapes from different grid size.) The limit of the co
tinuous grid refinement is often associated with micro-structu
materials, the latter also provide the basis for the homogeniza
method.

(a) Result from50×25grid (b) Result from100×50grid

Figure 16. Strain energy distribution of the optimal shapes from different

grid size in the free-form shape optimization without nucleation of holes.

7 Conclusions
We proposed a new method for shape optimization that co

bines and subsumes free-form and parametric shape optimiza
approaches. The resulting space of shapes is fully paramete
by the B-spline coefficients (for the free-form boundaries) a
geometric dimensional parameters, without restricting the pa
meterization to any particular topology. This parametrizati
transforms the difficult shape and topology optimization pro
lems into a relatively straightforward sizing problem to whic
Copyright c© 2006 by ASME
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many gradient-base optimization techniques can be applied. F
ther the differentiability of the constructed level set function sup
ports rigorous shape sensitivity analysis, where free-form a
parametric shape sensitivity can be treated simultaneously.

The generality and flexibility of the proposed approach a
demonstrated by numerical examples for a two dimensional m
imum compliance problem. To our knowledge, this is the firs
work on shape optimization that combines free-form shape o
timization and parametric shape optimization. Many existin
shape optimization methods can be treated as special case
our approach. In level set method, a boundary velocityVn is
constructed to guarantee a descent direction [52, 2]. This tech-
nique can also be implemented in our approach if we apply lev
set equationdΦ

dt = −|∇Φ| ·Vn in Expression (12). Use of shape
functionals to represent level set surfaces for shape optimiz
tion as proposed in [54] and [3] corresponds to special cases o
free-form optimization into our approach. Last, but not leas
traditional parametric shape optimization is already built in ou
approach, but with added ability to control topological change
throughout the optimization process.
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