
 1 Copyright © 2004 by ASME 

Proceedings of DETC/CIE 2004: 
Design Engineering Technology Conferences & Computers in Information and Engineering Conference 

September 28-October 2, 2004, Salt Lake City, Utah 

  DETC2004-57475 

SEGMENTATION OF NOISY LASER-SCANNER GENERATED 
MESHES WITH PIECEWISE POLYNOMIAL APPROXIMATIONS 

 
 

Miguel Vieira1 Kenji Shimada2 
 

Department of Mechanical Engineering 
Carnegie Mellon University 

 
 

                                                           
1 mcv@andrew.cmu.edu 
2 shimada@cmu.edu 
Correspondence to: Kenji Shimada 
The Department of Mechanical Engineering, Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh PA 15213 

ABSTRACT 
Laser scanners offer a fast and simple way of collecting large 

amounts of geometric data from real-world objects.  Although this 
aspect makes them attractive for design and reverse engineering, the 
laser-scanner data is often noisy and not partitioned into meaningful 
surfaces.  A good partitioning, or segmentation, of the scanner data has 
uses including feature detection, surface boundary generation, surface 
fitting, and surface reconstruction.  This paper presents a method for 
segmenting noisy three-dimensional surface meshes created from 
laser-scanned data into distinct regions closely approximated by 
explicit surfaces.  The algorithm first estimates mesh curvatures and 
noise levels and then uses the curvature data to construct seed regions 
around each vertex.  If a seed region meets certain criteria, it is 
assigned a region number and is grown into a set of connected vertices 
approximated by a bicubic polynomial surface.  All the vertices in a 
region are within known distance and surface normal tolerances from 
their underlying surface approximations.  The algorithm works on 
noisy or smooth data and requires little or no user interaction.  We 
demonstrate the effectiveness of the segmentation on real-world 
examples.   

 
 

1. INTRODUCTION 
The speed, ease, and accuracy with which laser scanners can 

acquire digital geometric data of real world objects promises 
substantial potential for their applicability in different aspects of 
industrial design.  They produce dense point clouds, often triangulated 
by built-in software, representing the surface geometry of the scanned 
object.  Their practicality makes them desirable for tasks such as 
quality control, product development, reverse engineering, and rapid 
prototyping.   

However, aside from being meshed into a triangulated surface, 
the data points are not organized into meaningful sets that could be 
useful for later processing.  A desirable partitioning of laser-scanner 
data for engineering design would identify surfaces of constant or 

slowly varying curvature, either blended at their boundaries or 
connected along sharp edges.   

Such a segmentation of laser-scanner data is highly desirable for 
several reasons.  The segmented surfaces and their boundaries could 
be used to define boundary curves for fitting surface patches to the 
scanner data.  They could also be used to detect feature/character lines 
on the scanned surface.  Finally, the segmented surfaces could be used 
to automatically create a piecewise-smooth reconstruction of the 
scanned object. 

There are numerous difficulties in segmenting an unstructured 
noisy surface mesh.  Existing segmentation algorithms either are 
designed for structured, height-field data or rely on curvature estimates 
and edge detection.  However, triangles of widely varying size and 
shape and a high level of scanner noise make such algorithms unusable 
for laser-scanner generated meshes. 

The goal of this work is to describe a method for segmenting 
laser-scanner data into distinct surfaces and to generate analytical 
representations for them.  Our algorithm segments the mesh into 
several regions, each one described by a bicubic polynomial surface.  
Upon the completion of the algorithm, every vertex in each region lies 
within a certain distance from the polynomial approximating the 
region.   

The first step of the algorithm is to estimate the curvatures and 
noise level of the mesh (Section 3).  The noise is measured both in 
terms of distance and vertex normal deviation from an underlying 
smooth surface.  The vertex curvatures are then used to select seed 
vertices (Section 4), and we attempt to grow regions from each seed 
vertex (Section 5).  If a seed region and its approximating surface 
satisfy the requirements for a region, it becomes a new region and 
begins growing (Section 6).  Vertices adjacent to a region are added as 
long as they are compatible with the surface approximating the region.  
The requisite data structures are as follows.  For each vertex, we 
record the number of the region it belongs to, 0  indicating that a 
vertex is unsegmented.  For each region number, we store the 
translation and rotation matrices for its local coordinate system and the 
coefficients of its polynomial approximation.  A region is a list of 
vertices. 
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Figure 1.  A noisy synthetic surface mesh with simulated reflection lines.  This mesh will be used to demonstrate the different steps of the algorithm. 

 
 

 
2. RELATED WORK 

The mesh segmentation algorithm presented in this paper extends 
the region growing method first presented by Besl and Jain [1] and 
further developed in [2],[3],[4] and applies it to noisy, unstructured 
surface meshes.  In the original paper [1], noisy image and range data 
are modeled as piecewise smooth surfaces.  The region growing 
algorithm then segments the data into regions that can be accurately 
represented by bivariate polynomials.  The algorithm works by first 
estimating image noise by calculating the distance from each pixel to a 
locally fit least-squares plane.  Then the image is partitioned into areas 
with constant-sign Gauss and mean curvatures.  These areas are 
contracted to create seed regions containing a few pixels.  Bivariate 
polynomials are fit to the seed regions and they are grown by adding 
adjacent pixels compatible with the polynomials.  Bilinear 
polynomials are used at first, but the polynomial order can increase up 
to biquartic when a low order surface can no longer accurately 
approximate the pixels in a region.   

More recently, Mangan and Whitaker [5] adapted the 
morphological watershed algorithm from image analysis to surface 
meshes.  The idea is to calculate the curvature on the mesh and then 
find local curvature minima.  These minima are labeled and become 
catchment basins.  Then, for each unlabeled vertex, a steepest descent 
(based on curvature) path is followed until a labeled vertex is reached.  
The unlabeled vertex is then assigned this label.  Once all vertices are 
labeled, regions are merged with a preference for regions with a larger 
difference between the highest and lowest curvature vertices they 
contain.  Improvements to the original algorithm in [5] are given in [6] 
and [7].  Taking a physics-based approach, Wu and Levine [8] 
segment a surface mesh by simulating the electrical charge density 
distribution on the surface and then segmenting it along lines of charge 
density minima.  Lessage, et al, [9] segment surface meshes by first 
detecting sharp edges on the mesh and then growing regions made of 
vertices of similar curvatures, bounded by sharp edges. 

The existing region growing papers [1][2][3][4] are based on 
gridded height data and their algorithms are not applicable to general 
three-dimensional surfaces.  The recent algorithms for three-
dimensional mesh segmentation partition a mesh into distinct regions, 
but the segments cannot in general be approximated accurately by 
simple surfaces.  The new algorithms are mostly based on curvature 
estimates or edge detection, which can be unreliable on noisy meshes.  
Furthermore, as mentioned in [4], such algorithms will likely fail in 
industrial design applications where part surfaces can consist of 
smoothly blended surfaces with no sharp edges.  Finally, the results of 
recent algorithms do not give any information for a smooth 
reconstruction of the part.   

In this paper, we extend the region growing algorithm to 
unstructured three-dimensional surface meshes.  We introduce new 
methods for estimating mesh noise and for region growing on three-
dimensional surfaces.  Our algorithm works on noisy data with little or 
no user interaction.  Upon completion, the algorithm produces both a 
mesh segmentation and a set of surfaces that approximate every point 

in each segment to known tolerances.  Figure 1 shows a synthetic 
surface with noise artificially added.  This surface will be used to 
demonstrate the different steps of our algorithm.  
 

 
3. NOISE ESTIMATION 

The algorithm starts by estimating the noise variance of the mesh.  
Later, during region growing, we will use the noise level estimates as 
thresholds for adding vertices to regions.  Because there is no ground 
truth available for comparison with the laser-scanner data, we assume 
the mesh vertex positions represent noisy samples of a smooth surface.  
Then, for some small area on the mesh, a biquadratic polynomial 
approximation should provide a reasonable estimate of the position 
and shape of the original surface near that area.  We choose a 
biquadratic surface because it is of low order and a planar surface 
would be unable to differentiate between noise and a smooth, curved 
surface.  Our algorithm approximates the submesh around each vertex 
with a polynomial surface and calculates errors by measuring the 
deviation of the mesh vertices from their approximating surfaces. 
 
 
3.1 Vertex Neighborhood Construction 

The algorithm visits each vertex ix  of the mesh and constructs a 
small neighborhood of nearby vertices.  This neighborhood consists of 
all vertices topologically connected to ix  and lying within a certain 

distance from it.  The average length of the N  edges incident to the 
vertex determines this distance:  
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This local calculation of average edge length is more useful than a 
global calculation because overlapping scans of a part can lead to 
widely varying vertex densities and edge lengths.  To form the 
neighborhood, we begin by adding vertex ix  to it and then all 

connected vertices jx  whose Euclidean distances from ix  satisfy 

 ,j i avg ilω− <x x , (2) 

where ω  scales the radius of the neighborhood.  Increasing ω  makes 
the approximation more robust and less sensitive to noise, but also 
makes it more susceptible to feature edges and discontinuities in the 
original part.  In our experiments, we found that 3.0ω =  works well 
even for noisy meshes.   
 
3.2 Biquadratic Surface Fitting 

We approximate the mesh near vertex ix  by least squares fitting 
a biquadratic polynomial to the vertices in its neighborhood.  We 
perform a linear least squares fit in a local ( , ,u v w ) coordinate system 
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with ix  at the origin and its vertex normal in  as the w  axis.  The 
normal of the vertex is defined by 

 ( )( ) ( )( )i j j j jj F i j F i
F Fθ θ

∈ ∈
= ∑ ∑n n n , (3) 

where ( )jFn  is the normal of incident face jF , and jθ  is the angle 

formed by the edges of jF  incident to ix .  Although there are various 

ways of estimating the surface normal, we choose this one because it is 
fast, local, and achieves good results.  The ,u v  axes of the local 

coordinate system are found by taking cross products with in .  We 

find the positions ju  of the neighborhood vertices using the rotation 

and translation 
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in 
 j j= +u Qx T . (5) 

Then we determine its coefficients of the full biquadratic polynomial 

( ) 2 2
00 01 10 20 11 02,h u v a a u a v a u a uv a v= + + + + +  

by least-squares fitting it to the neighborhood.  We solve the least 
squares problem by generating the normal equations and then finding 
the polynomial coefficients with Cholesky factorization.  See a 
reference such as [10] or [11] for details.  Finally, we use ( ),h u v  to 
define a patch  

( )( ), , ,u v h u v=x  

that approximates the vertex neighborhood.  
 
 
3.3 Curvature Calculation 

With a polynomial approximation for the neighborhood in hand, 
we can calculate robust estimates of the mean and Gaussian curvatures 
at the vertex.  For other methods of calculating curvature on meshes, 
see [12].  The curvature estimates are then used to compute the 
principal and absolute curvatures at the vertex, which will be useful for 
seed vertex selection, as described in Section 4.  We begin by 
calculating the coefficients of the first and second fundamental forms 
of the surface at the origin of the local coordinate system.  They are 
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and all partial derivatives are evaluated at the origin.  The Gaussian 
curvature is then  

2

2

LN M
K

EG F

−
=

−
 

and the mean curvature is  
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Figure 2. The estimated noise on the mesh.  The noise is zero where 

Eq. (8) holds, shown in blue. 
 
 

Finally, the principal curvatures are 

 2
1 H H Kκ = + −  

and 

 2
2 H H Kκ = − − . 

 
 

(7) 

The absolute curvature, which will be used for seed vertex selection, is 
defined as the square root of the summed squares of the principal 
curvatures 

2 2
1 2absκ κ κ= + . 

 
 
3.4 Feature Edge Detection 

If the neighborhood of a vertex includes a sharp edge, then a 
biquadratic polynomial will not in general be able to model it 
correctly.  It is unwise to trust the polynomial approximation for noise 
estimation in such a case, since a poor fit will likely over- or 
underestimate the noise at a vertex.  Therefore, we want to use the 
biquadratic surface for noise estimation only when the surface is 
relatively flat - in places where the original surface has small, slowly 
varying curvatures.  The quantity 1,iκ  is the largest curvature 

(alternatively, the smallest radius of curvature) in any direction at 
vertex ix .  A small radius of curvature indicates a feature edge or 
discontinuity in the original surface.  Through various experiments, we 
determined that when the radius of curvature is less that 10 times the 
average edge length, then a feature is probable near a vertex.  
Therefore, if 

 ,
1,

1
10 avg i

i

l
κ

<  
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for the polynomial approximating the neighborhood of vertex ix , then 
the vertex error is not included in the estimate of the total noise for the 
mesh.   
 
 
3.5 Global Noise Estimation 

We can now estimate the mesh noise.  We quantify the noise in 

both a 0G  and 1G  sense.  That is, in addition to measuring the 
difference between each mesh vertex and its approximating 

polynomial (the 0G  error estimate), we also measure the difference 
between each mesh vertex normal and the normal of its approximating 

polynomial (the 1G  error estimate).  By definition, the vertex whose 
noise we are measuring lies at the origin of its local coordinate system.  

Therefore, the 0G  noise for vertex ix  is simply 
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Figure 3.  The absolute curvature on the mesh.  The unfiltered curvature is shown on the left and the filtered curvature is on the right.  Note how the 

absolute curvature strongly differentiates between flat and curved areas. 
 

 
 

 0
00i aε = . (9) 

The 1G  error measures the difference between the vertex normal and 
the surface normal of the approximating surface and is given by 

 ( )1 1cosi iε −= ⋅n n , (10) 

where n  and in  are as defined in Eqs. (3) and (6).  Both of these error 
estimates will be used for testing vertex compatibility during region 
growing.  Note that if Eq. (8) holds for a vertex ix , then we set 

0 1 0i iε ε= = .  The error 0
iε  is shown in Figure 2. 

We must remark here that our mesh noise calculation makes some 
notable assumptions.  First, Eq. (9) assumes the error of each vertex 
occurs only in the vertex normal direction.  In reality, the error of the 
vertex is truly three-dimensional and may likely be related to laser 
scanner orientation.  Furthermore, we do not calculate the shortest 
distance from each vertex to its approximating polynomial.  Our 
estimate, however, requires virtually no computation and never 
underestimates the noise of a vertex.  Second, Eq. (10) assumes that 
our calculation of the mesh vertex normal in Eq. (3) is in some sense 
correct for the vertex, when this clearly may not be the case in the 
presence of noise.  Finally, the polynomial approximation itself is a 
function of the mesh vertex normal calculation, since the shape of the 
surface approximating the vertex neighborhood will change with the 
local coordinate system.  We clearly simplify the problem a great deal.  
Nevertheless, our calculated noise values correspond well with those 
quoted by laser scanner manufacturers and laser scanner operators and 
we believe our noise estimation is sound.   

To calculate the noise level for the entire mesh, we calculate the 

sum of squares of the 0G  and 1G  errors for all vertices not lying near 
feature edges.  Dividing the sum by the number of vertices for which 
the errors were computed and taking the square root, we arrive at an 
estimate for the root-mean-square position and normal errors, 
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where 0,1j =  and M  and 'M  are the total number of mesh vertices 
and the number of mesh vertices not on feature edges according to Eq. 
(8), respectively.  During segmentation, the noise estimates will be 
crucial in deciding if vertices should be added to growing regions.   

 
 

4. SEED VERTEX SELECTION AND  
CURVATURE FILTERING 

 
 

4.1 Seed Vertex Selection 
We use a simple scheme for seed vertex selection, sorting the 

vertices by their filtered absolute curvature and then growing regions 

from each vertex in order of ascending curvature.  We choose absolute 
curvature because it can detect flat areas more reliably than Gaussian 
curvature and is more sensitive to surface bending than mean 
curvature. 
 
 
4.2 Curvature Filtering 

Although the size of the neighborhoods used for polynomial 
approximation mollifies some of the effects of noise on the estimated 
curvature, the curvature can still appear speckled.  Therefore, we 
suggest smoothing the curvature with a single pass of a median filter.  
The implementation of a median filter on mesh curvature is parallel to 
its implementation on an image.  For each vertex, we sort the absolute 
curvature values of its adjacent vertices and then change its curvature 
value to the median absolute curvature: 

( ), ,abs i abs jnew
medianκ κ=    . 

A single iteration of this approach produces good results.  Note that 
the mesh vertices are not moved, but only the curvature of the vertices 
is changed.  A median filter is appropriate for smoothing the curvature 
because it is a robust statistic uninfluenced by outlier noise and 
because it does not create new curvature values.  The effects of median 
filtering on the absolute curvature are shown in Figure 3. 

We assume that, at any point during the segmentation process, the 
best seed vertex is the one with lowest absolute curvature not already 
belonging to any region.  Therefore, to find seed vertices, the 
algorithm first sorts all the vertices by their filtered absolute curvatures 
and then attempts to grow regions from all the vertices in the mesh in 
order of increasing absolute curvature, skipping vertices already 
assigned to regions. 

 
 

5. SEED REGION CONSTRUCTION 
Once a seed vertex has been selected, the algorithm checks if the 

vertex neighborhood is suitable for region growing and, if this is the 
case, uses the neighborhood to find a surface approximation for region 
growing.   

We choose to segment meshes into regions that can be accurately 
represented by bicubic polynomials because such functions are easy to 
deal with and prove the feasibility of our approach.  Clearly, however, 
there are surfaces common in engineering, such as cylinders and 
spheres, which cannot be properly modeled with such functions.  
Nevertheless, many classes of surfaces could be used within the 
framework presented here.  The requirements are that one can readily 
fit the surfaces to an arbitrary mesh, calculate surface normals, and 
calculate distances from the surfaces to points in space. 

Because the algorithm uses a full bicubic polynomial for region 
growing, at least ten vertices are needed for least-squares fitting.  In 
our implementation, we use at least twenty vertices to ensure 
algorithmic stability.  The initial neighborhood is constructed by 
adding the seed vertex to it, and then adding more vertices based on 
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their topological distance from the seed vertex until the neighborhood 
contains more than twenty vertices. 

Once the initial neighborhood has been constructed, the seed 
vertex normal is used to determine a local coordinate system and a 
bicubic polynomial surface is fit to all the vertices in the vertex 
neighborhood in this coordinate system (see Eqs. (4) and (5)).  The full 
bicubic polynomial is 

( ) 00 01 10

2 2
20 11 02

3 2 2 3
30 21 12 03

,

.

h u v a a u a v

a u a uv a v

a u a u v a uv a v

= + +

+ + +

+ + + +

 

Because the initial neighborhood is grown rather arbitrarily and may, 
for example, contain a feature edge, we must test its compatibility with 
the approximating surface.  We therefore test the 0G  and 1G  
compatibility of each vertex in the initial neighborhood with the 
bicubic polynomial.  If any vertices in the neighborhood do not satisfy 
the compatibility requirements, the region is rejected.  This means 
none of the vertices in the seed region are assigned to a region.  Then 
the algorithm moves on to the next seed vertex.  Compatibility is 
verified by first checking if 

 ( ) 0
0,j i iw h u v ω σ− < , (12) 

where jw  is the height in the local coordinate system of vertex jx  

and h  is evaluated at ( ),i iu v .  Then, we calculate the 1G  
compatibility.  Letting  

( )( ), , ,u v h u v=x  

again, we check the condition 

( )1 1
1cos i ω σ− ⋅ <n n  (13) 

where in  is the vertex normal calculated by Eq. (3) and n  is found 

with Eq. (6) evaluated at ( ),i iu v .  The coefficients 0ω  and 1ω  are 
empirically determined and, in general, scanner dependent.  If we 

assume the noise is normally distributed, then the iσ  are standard 

deviations and, for example, 95%  of vertices can be expected to lie 

within 02σ  of a good polynomial approximation.   
 
 
6. REGION GROWING 

If the surface approximating the initial neighborhood of the seed 
vertex passes the compatibility tests, Eqs. (12) and (13), then the 
neighborhood becomes a seed region and we begin region growing.  
This is a simple process in which vertices adjacent to the region are 
added to it if they do not yet belong to a region and if they satisfy the 
compatibility inequalities (12) and (13).  This is continued until all 
vertices adjacent to the region are either incompatible with its 
polynomial approximation or are already assigned to other regions. 

Once a region finishes growing, we try to enlarge it by fitting a 
new bicubic polynomial surface to it.  Because the region can be quite 
large, however, the seed vertex normal does not necessarily provide a 
good basis for a local coordinate system.  Therefore, we perform a 
linear least squares fit of a plane in the existing local coordinate 
system and then use the plane normal to compute a new local 
coordinate system.  That is, if the plane is given by 

( ) 00 01 10,h u v a a u a v= + + , 
then its normal is 

[ ]01 10

2 2
01 10

, ,1

1

Ta a

a a

− −
=

+ +
n , 

and we fit the new bicubic polynomial surface to the region in the 
coordinate system defined by n  and the seed vertex position.  Note  

 
Figure 4.  Final segmentation.  Black lines represent unsegmented 

areas. 
 
 

that n  must be cast into the global coordinate system.  The vertices in 
the region might no longer be compatible with the new surface 
representation, so the region is cleared and all its vertices are reset to 
not belong to any region.  Then the algorithm begins growing the 
region from the seed vertex again.  The goal of this approach is to 
obtain the largest possible region with the best possible surface 
representation.   

We repeat the process of region growing and surface refitting 
until the size of the region stops increasing from one iteration to the 
next.  In our implementation, we stop the algorithm when the size of 
the current region is less than five vertices larger than the size of the 
previous region.  That is, we stop when 

 5new oldR R− < . (14) 

For the first iteration, oldR  is set equal to the size of the initial seed 
vertex neighborhood.  When a region meets this termination criterion, 
it is saved and a new seed vertex is selected.  A segmented mesh is 
shown in Figure 4. 

Once a region finishes growing, we have a group of connected 

vertices that are all approximated to known tolerances i
iω σ  by a 

bicubic polynomial surface in a local coordinate system.  When all 
seed vertices have been checked, if the compatibility conditions are 
properly set, then the mesh is partitioned into connected sets of 
vertices representing meaningfully different surfaces.   
 
 
Speckle Removal 

Once the mesh segmentation is complete, the algorithm makes 
one pass through the mesh to remove small holes in the regions caused 
by outlier vertices.  Outlier vertices are caused by spike noise in the 
laser-scanner data and lie far outside the bounds assumed by a normal 
distribution and would generally not pass the compatibility tests for a 
region.  Therefore, vertices obviously corrupted by spike noise are 
assigned to the region surrounding them.  Specifically, after 
segmentation is complete, all vertices not assigned to a region, but 
surrounded by vertices belonging to a single region, are assigned to 
their surrounding region. 

 
 

7. RESULTS 
In Figures 6 and 7, we demonstrate the various steps of our 

algorithm on two real data sets.  Figure 6 shows an automobile C-pillar 
and Figure 7 shows part of an engine.  Figures 6(a) and 7(a) merely 
demonstrate the noise level of the meshes by simulating reflection 
lines on them. 

In Figures 6(b) and 7(b), the mesh vertices are colored based on 
the noise value calculated in Eq. (9).  Vertices where Eq. (8) holds and 
the error is set to zero, are shown in blue.  Note that strong feature 
edges are correctly avoided.  The calculated normal errors are 
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0 0.24σ =  mm and 1 6.5σ = o  for the automobile panel and 0 0.075σ =  

mm and 1 8.0σ = o  for the engine.   
Figures 6(c) and 7(c) show the median-filtered absolute curvature 

of the meshes, and Figures 6(d) and 7(d) show the final segmentation.  
Note the robust curvature estimation in the presence of noise.  For 
segmentation, we used 0 1.0ω =  and 1 0.6ω =  for the automobile 

panel and 0 2.5ω =  and 1 2.0ω =  for the engine.  In both cases, the 
segmentation produces large segments with clear boundaries. 

In Figures 6(e) and 7(e) we demonstrate the smoothness of the 
polynomial surfaces approximating each region by merely projecting 
each vertex onto the polynomial approximating the region to which it 
belongs.  Discontinuities at region boundaries and unsegmented areas 
are visible.  

 
 

8. CONCLUSIONS AND DISCUSSION 
Our algorithm generates reasonable segmentations of noisy and 

smoothed laser-scanner data with little or no user interaction.  The 
algorithm also works in a few seconds, even on large data sets.  In 
addition to partitioning the mesh data, the algorithm also creates 
surfaces that approximate the data to within known tolerances.  The 
segmentation and the surfaces associated with it have many 
applications, including feature detection, boundary generation for 
patch fitting, and surface reconstruction.  The segmentation can often 
be improved if the laser-data is smoothed first using an algorithm that 
preserves sharp edges and feature lines, such as [13]. 

Although bicubic polynomial surfaces were used to demonstrate 
the feasibility of the algorithm, they may not be the best class of 
surfaces for segmenting general three-dimensional surface data.  
Clearly, cylindrical or spherical surfaces, which occur frequently in 
engineering design, cannot be modeled properly with piecewise 
bicubic surfaces.  Furthermore, in this work we parameterize data 
points by projecting them onto a plane, but for a robust 
implementation a more general form of parameterization should be 
used. 

Using the approximating surfaces and their corresponding regions 
to find feature lines and inflection lines is a promising direction of 
research.  The segmentation can also be used for feature detection.  
The region boundaries and approximating surfaces might also be used 
to define patch boundaries for part design.  Indeed, the region 
boundaries themselves can be segmented into sets of connected mesh 
edges represented by piecewise smooth space curves.  This is 
described for images and range data in [2].  Furthermore, one might 
also use inflection lines calculated from the approximating surfaces to 
define patch boundaries. 

Finally, the segmentation can be used to reconstruct piecewise 
smooth surfaces from noisy data.  The segmentation creates several 
smooth surfaces that approximate the mesh with high accuracy.  The 
region boundaries can then be examined to determine whether adjacent 
regions merge smoothly or along sharp edges.  Adjacent surfaces with 
very similar surface normals along their boundaries could be blended 
and those with differing normals could be connected along their 
intersection, creating a sharp edge.  These surfaces could then be used 
to remesh the part.   

ACKNOWLEDGEMENTS 
This work is based in part on work supported under an 

NSF CAREER Award (No. 9985288).  We would like to thank 
Konica-Minolta and Honda for the data sets used in this work. 

REFERENCES 
[1] Besl, P. J. and Jain, R. C., 1988, "Segmentation Through 

Variable-Order Surface Fitting," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 10, pp. 167-192. 

[2] Besl, P. J., 1988, Surfaces in Range Image Understanding, 
Springer -Verlag, New York. 

[3] Djebali, M., Melkemi, M. and Sapidis, N., 2002, "Range-Image 
Segmentation and Model Reconstruction Based on a Fit-and-
Merge Strategy," ACM Symposium on Solid Modeling and 
Applications, pp.  

[4] Sapidis, N. S. and Besl, P. J., 1995, "Direct Construction of 
Polynomial Surfaces from Dense Range Images through Region 
Growing," ACM Transactions on Graphics, 14, pp. 171-200. 

[5] Mangan, A. P. and Whitaker, R. T., 1999, "Partitioning 3D 
Surface Meshes Using Watershed Segmentation," IEEE 
Transactions on Visualization and Computer Graphics, 5, pp. 
308-321. 

[6] Pulla, S., Razdan, A. and Farin, G., 2001, "Improved Curvature 
Estimation for Watershed Segmentation of 3-Dimensional 
Meshes," Arizona State University, Tech. Rep.  

[7] Page, D. L., 2003, "Part Decomposition of 3D Surfaces," Ph. D., 
University of Tennessee, Knoxville. 

[8] Wu, K. and Levine, D., 1997, "3D Part Segmentation Using 
Simulated Electrical Charge Distributions," IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 19, pp. 1223-1235. 

[9] Lesage, D., Leon, J.-C. and Véron, P., 2001, "Discrete Curvature 
Approximations for the Segmentation of Polyhedral Surfaces," 
DETC 2001, Pittsburgh, PA, pp.  

[10] Press, W., Teukolsky, S., Vetterling, W. and Flannery, B., 1997, 
Numerical Recipes in C, Second Edition, Cambridge University 
Press, New York, NY, USA. 

[11] Golub, G. and Loan, C. V., 1996, Matrix Computations, Third 
Edition, Johns Hopkins University Press, Baltimore, MD. 

[12] McIvor, A. and Valkenburg, R., 1997, "A Comparison of Local 
Surface Geometry Estimation Methods," Machine Vision and 
Applications, 10, pp. 17-26. 

[13] Vieira, M., Shimada, K. and Furuhata, T., 2004, "Smoothing of 
Noisy Laser Scanner Generated Meshes Using Polynomial Fitting 
and Neighborhood Erosion," Journal of Mechanical Design (to 
appear).  

 



 7 Copyright © 2004 by ASME 

 
(a) Reflection lines on noisy mesh. 

 

 
(c) Filtered absolute curvature. 

 

 
(b) Estimated noise. 

 

 
(d) Segmentation 

 

 
(f) Reflection lines on approximating surfaces 

 
 

Figure 6.  The different steps of our algorithm on a noisy laser scan of an automobile C-pillar.  99,970 vertices. 
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(a) Reflection lines on noisy mesh. 

 

 
(c) Filtered absolute curvature. 

 

 
(b) Estimated noise. 

 

 
(d) Segmentation. 

 

 
(f) Reflection lines on approximating surfaces. 

 
 

Figure 7.  The different steps of our algorithm on a noisy laser scan of an engine part.  278,667 vertices. 


