
 1 Copyright © 2004 by ASME

Proceedings of DETC/CIE 2004:
Design Engineering Technology Conferences & Computers in Information and Engineering Conference

September 28-October 2, 2004, Salt Lake City, Utah

 DETC2004-57475

SEGMENTATION OF NOISY LASER-SCANNER GENERATED
MESHES WITH PIECEWISE POLYNOMIAL APPROXIMATIONS

Miguel Vieira1 Kenji Shimada2

Department of Mechanical Engineering
Carnegie Mellon University

1 mcv@andrew.cmu.edu
2 shimada@cmu.edu
Correspondence to: Kenji Shimada
The Department of Mechanical Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213

ABSTRACT
Laser scanners offer a fast and simple way of collecting large

amounts of geometric data from real-world objects. Although this
aspect makes them attractive for design and reverse engineering, the
laser-scanner data is often noisy and not partitioned into meaningful
surfaces. A good partitioning, or segmentation, of the scanner data has
uses including feature detection, surface boundary generation, surface
fitting, and surface reconstruction. This paper presents a method for
segmenting noisy three-dimensional surface meshes created from
laser-scanned data into distinct regions closely approximated by
explicit surfaces. The algorithm first estimates mesh curvatures and
noise levels and then uses the curvature data to construct seed regions
around each vertex. If a seed region meets certain criteria, it is
assigned a region number and is grown into a set of connected vertices
approximated by a bicubic polynomial surface. All the vertices in a
region are within known distance and surface normal tolerances from
their underlying surface approximations. The algorithm works on
noisy or smooth data and requires little or no user interaction. We
demonstrate the effectiveness of the segmentation on real-world
examples.

1. INTRODUCTION
The speed, ease, and accuracy with which laser scanners can

acquire digital geometric data of real world objects promises
substantial potential for their applicability in different aspects of
industrial design. They produce dense point clouds, often triangulated
by built-in software, representing the surface geometry of the scanned
object. Their practicality makes them desirable for tasks such as
quality control, product development, reverse engineering, and rapid
prototyping.

However, aside from being meshed into a triangulated surface,
the data points are not organized into meaningful sets that could be
useful for later processing. A desirable partitioning of laser-scanner
data for engineering design would identify surfaces of constant or

slowly varying curvature, either blended at their boundaries or
connected along sharp edges.

Such a segmentation of laser-scanner data is highly desirable for
several reasons. The segmented surfaces and their boundaries could
be used to define boundary curves for fitting surface patches to the
scanner data. They could also be used to detect feature/character lines
on the scanned surface. Finally, the segmented surfaces could be used
to automatically create a piecewise-smooth reconstruction of the
scanned object.

There are numerous difficulties in segmenting an unstructured
noisy surface mesh. Existing segmentation algorithms either are
designed for structured, height-field data or rely on curvature estimates
and edge detection. However, triangles of widely varying size and
shape and a high level of scanner noise make such algorithms unusable
for laser-scanner generated meshes.

The goal of this work is to describe a method for segmenting
laser-scanner data into distinct surfaces and to generate analytical
representations for them. Our algorithm segments the mesh into
several regions, each one described by a bicubic polynomial surface.
Upon the completion of the algorithm, every vertex in each region lies
within a certain distance from the polynomial approximating the
region.

The first step of the algorithm is to estimate the curvatures and
noise level of the mesh (Section 3). The noise is measured both in
terms of distance and vertex normal deviation from an underlying
smooth surface. The vertex curvatures are then used to select seed
vertices (Section 4), and we attempt to grow regions from each seed
vertex (Section 5). If a seed region and its approximating surface
satisfy the requirements for a region, it becomes a new region and
begins growing (Section 6). Vertices adjacent to a region are added as
long as they are compatible with the surface approximating the region.
The requisite data structures are as follows. For each vertex, we
record the number of the region it belongs to, 0 indicating that a
vertex is unsegmented. For each region number, we store the
translation and rotation matrices for its local coordinate system and the
coefficients of its polynomial approximation. A region is a list of
vertices.

 2 Copyright © 2004 by ASME

Figure 1. A noisy synthetic surface mesh with simulated reflection lines. This mesh will be used to demonstrate the different steps of the algorithm.

2. RELATED WORK

The mesh segmentation algorithm presented in this paper extends
the region growing method first presented by Besl and Jain [1] and
further developed in [2],[3],[4] and applies it to noisy, unstructured
surface meshes. In the original paper [1], noisy image and range data
are modeled as piecewise smooth surfaces. The region growing
algorithm then segments the data into regions that can be accurately
represented by bivariate polynomials. The algorithm works by first
estimating image noise by calculating the distance from each pixel to a
locally fit least-squares plane. Then the image is partitioned into areas
with constant-sign Gauss and mean curvatures. These areas are
contracted to create seed regions containing a few pixels. Bivariate
polynomials are fit to the seed regions and they are grown by adding
adjacent pixels compatible with the polynomials. Bilinear
polynomials are used at first, but the polynomial order can increase up
to biquartic when a low order surface can no longer accurately
approximate the pixels in a region.

More recently, Mangan and Whitaker [5] adapted the
morphological watershed algorithm from image analysis to surface
meshes. The idea is to calculate the curvature on the mesh and then
find local curvature minima. These minima are labeled and become
catchment basins. Then, for each unlabeled vertex, a steepest descent
(based on curvature) path is followed until a labeled vertex is reached.
The unlabeled vertex is then assigned this label. Once all vertices are
labeled, regions are merged with a preference for regions with a larger
difference between the highest and lowest curvature vertices they
contain. Improvements to the original algorithm in [5] are given in [6]
and [7]. Taking a physics-based approach, Wu and Levine [8]
segment a surface mesh by simulating the electrical charge density
distribution on the surface and then segmenting it along lines of charge
density minima. Lessage, et al, [9] segment surface meshes by first
detecting sharp edges on the mesh and then growing regions made of
vertices of similar curvatures, bounded by sharp edges.

The existing region growing papers [1][2][3][4] are based on
gridded height data and their algorithms are not applicable to general
three-dimensional surfaces. The recent algorithms for three-
dimensional mesh segmentation partition a mesh into distinct regions,
but the segments cannot in general be approximated accurately by
simple surfaces. The new algorithms are mostly based on curvature
estimates or edge detection, which can be unreliable on noisy meshes.
Furthermore, as mentioned in [4], such algorithms will likely fail in
industrial design applications where part surfaces can consist of
smoothly blended surfaces with no sharp edges. Finally, the results of
recent algorithms do not give any information for a smooth
reconstruction of the part.

In this paper, we extend the region growing algorithm to
unstructured three-dimensional surface meshes. We introduce new
methods for estimating mesh noise and for region growing on three-
dimensional surfaces. Our algorithm works on noisy data with little or
no user interaction. Upon completion, the algorithm produces both a
mesh segmentation and a set of surfaces that approximate every point

in each segment to known tolerances. Figure 1 shows a synthetic
surface with noise artificially added. This surface will be used to
demonstrate the different steps of our algorithm.

3. NOISE ESTIMATION

The algorithm starts by estimating the noise variance of the mesh.
Later, during region growing, we will use the noise level estimates as
thresholds for adding vertices to regions. Because there is no ground
truth available for comparison with the laser-scanner data, we assume
the mesh vertex positions represent noisy samples of a smooth surface.
Then, for some small area on the mesh, a biquadratic polynomial
approximation should provide a reasonable estimate of the position
and shape of the original surface near that area. We choose a
biquadratic surface because it is of low order and a planar surface
would be unable to differentiate between noise and a smooth, curved
surface. Our algorithm approximates the submesh around each vertex
with a polynomial surface and calculates errors by measuring the
deviation of the mesh vertices from their approximating surfaces.

3.1 Vertex Neighborhood Construction

The algorithm visits each vertex ix of the mesh and constructs a
small neighborhood of nearby vertices. This neighborhood consists of
all vertices topologically connected to ix and lying within a certain

distance from it. The average length of the N edges incident to the
vertex determines this distance:

1

, 0

1 N
avg i j ij

l
N

−

=
= −∑ x x .

(1)

This local calculation of average edge length is more useful than a
global calculation because overlapping scans of a part can lead to
widely varying vertex densities and edge lengths. To form the
neighborhood, we begin by adding vertex ix to it and then all

connected vertices jx whose Euclidean distances from ix satisfy

 ,j i avg ilω− <x x , (2)

where ω scales the radius of the neighborhood. Increasing ω makes
the approximation more robust and less sensitive to noise, but also
makes it more susceptible to feature edges and discontinuities in the
original part. In our experiments, we found that 3.0ω = works well
even for noisy meshes.

3.2 Biquadratic Surface Fitting

We approximate the mesh near vertex ix by least squares fitting
a biquadratic polynomial to the vertices in its neighborhood. We
perform a linear least squares fit in a local (, ,u v w) coordinate system

 3 Copyright © 2004 by ASME

with ix at the origin and its vertex normal in as the w axis. The
normal of the vertex is defined by

 ()() ()()i j j j jj F i j F i
F Fθ θ

∈ ∈
= ∑ ∑n n n , (3)

where ()jFn is the normal of incident face jF , and jθ is the angle

formed by the edges of jF incident to ix . Although there are various

ways of estimating the surface normal, we choose this one because it is
fast, local, and achieves good results. The ,u v axes of the local

coordinate system are found by taking cross products with in . We

find the positions ju of the neighborhood vertices using the rotation

and translation

T
i

T
i

T
i

=

 
 
 
 
  

u

Q v

w

, i= −T x ,

(4)

in
 j j= +u Qx T . (5)

Then we determine its coefficients of the full biquadratic polynomial

() 2 2
00 01 10 20 11 02,h u v a a u a v a u a uv a v= + + + + +

by least-squares fitting it to the neighborhood. We solve the least
squares problem by generating the normal equations and then finding
the polynomial coefficients with Cholesky factorization. See a
reference such as [10] or [11] for details. Finally, we use (),h u v to
define a patch

()(), , ,u v h u v=x

that approximates the vertex neighborhood.

3.3 Curvature Calculation

With a polynomial approximation for the neighborhood in hand,
we can calculate robust estimates of the mean and Gaussian curvatures
at the vertex. For other methods of calculating curvature on meshes,
see [12]. The curvature estimates are then used to compute the
principal and absolute curvatures at the vertex, which will be useful for
seed vertex selection, as described in Section 4. We begin by
calculating the coefficients of the first and second fundamental forms
of the surface at the origin of the local coordinate system. They are

u u

u v

v v

E

F

G

= ⋅

= ⋅

= ⋅

x x

x x

x x

 and

,

uu

uv

vv

L

M

N

= ⋅

= ⋅

= ⋅

n x

n x

n x

where n is given by

 u v

u v

×
=

×

x x
n

x x

(6)

and all partial derivatives are evaluated at the origin. The Gaussian
curvature is then

2

2

LN M
K

EG F

−
=

−

and the mean curvature is

()2

2

2

GL EN FM
H

EG F

+ −
=

−
.

Figure 2. The estimated noise on the mesh. The noise is zero where

Eq. (8) holds, shown in blue.

Finally, the principal curvatures are

 2
1 H H Kκ = + −

and

 2
2 H H Kκ = − − .

(7)

The absolute curvature, which will be used for seed vertex selection, is
defined as the square root of the summed squares of the principal
curvatures

2 2
1 2absκ κ κ= + .

3.4 Feature Edge Detection

If the neighborhood of a vertex includes a sharp edge, then a
biquadratic polynomial will not in general be able to model it
correctly. It is unwise to trust the polynomial approximation for noise
estimation in such a case, since a poor fit will likely over- or
underestimate the noise at a vertex. Therefore, we want to use the
biquadratic surface for noise estimation only when the surface is
relatively flat - in places where the original surface has small, slowly
varying curvatures. The quantity 1,iκ is the largest curvature

(alternatively, the smallest radius of curvature) in any direction at
vertex ix . A small radius of curvature indicates a feature edge or
discontinuity in the original surface. Through various experiments, we
determined that when the radius of curvature is less that 10 times the
average edge length, then a feature is probable near a vertex.
Therefore, if

 ,
1,

1
10 avg i

i

l
κ

<

(8)

for the polynomial approximating the neighborhood of vertex ix , then
the vertex error is not included in the estimate of the total noise for the
mesh.

3.5 Global Noise Estimation

We can now estimate the mesh noise. We quantify the noise in

both a 0G and 1G sense. That is, in addition to measuring the
difference between each mesh vertex and its approximating

polynomial (the 0G error estimate), we also measure the difference
between each mesh vertex normal and the normal of its approximating

polynomial (the 1G error estimate). By definition, the vertex whose
noise we are measuring lies at the origin of its local coordinate system.

Therefore, the 0G noise for vertex ix is simply

 4 Copyright © 2004 by ASME

Figure 3. The absolute curvature on the mesh. The unfiltered curvature is shown on the left and the filtered curvature is on the right. Note how the

absolute curvature strongly differentiates between flat and curved areas.

 0
00i aε = . (9)

The 1G error measures the difference between the vertex normal and
the surface normal of the approximating surface and is given by

 ()1 1cosi iε −= ⋅n n , (10)

where n and in are as defined in Eqs. (3) and (6). Both of these error
estimates will be used for testing vertex compatibility during region
growing. Note that if Eq. (8) holds for a vertex ix , then we set

0 1 0i iε ε= = . The error 0
iε is shown in Figure 2.

We must remark here that our mesh noise calculation makes some
notable assumptions. First, Eq. (9) assumes the error of each vertex
occurs only in the vertex normal direction. In reality, the error of the
vertex is truly three-dimensional and may likely be related to laser
scanner orientation. Furthermore, we do not calculate the shortest
distance from each vertex to its approximating polynomial. Our
estimate, however, requires virtually no computation and never
underestimates the noise of a vertex. Second, Eq. (10) assumes that
our calculation of the mesh vertex normal in Eq. (3) is in some sense
correct for the vertex, when this clearly may not be the case in the
presence of noise. Finally, the polynomial approximation itself is a
function of the mesh vertex normal calculation, since the shape of the
surface approximating the vertex neighborhood will change with the
local coordinate system. We clearly simplify the problem a great deal.
Nevertheless, our calculated noise values correspond well with those
quoted by laser scanner manufacturers and laser scanner operators and
we believe our noise estimation is sound.

To calculate the noise level for the entire mesh, we calculate the

sum of squares of the 0G and 1G errors for all vertices not lying near
feature edges. Dividing the sum by the number of vertices for which
the errors were computed and taking the square root, we arrive at an
estimate for the root-mean-square position and normal errors,

 ()
1 2

2

0

1

'
Mj j

iiM
σ ε

=
=  

 
 

∑ ,

(11)

where 0,1j = and M and 'M are the total number of mesh vertices
and the number of mesh vertices not on feature edges according to Eq.
(8), respectively. During segmentation, the noise estimates will be
crucial in deciding if vertices should be added to growing regions.

4. SEED VERTEX SELECTION AND
CURVATURE FILTERING

4.1 Seed Vertex Selection
We use a simple scheme for seed vertex selection, sorting the

vertices by their filtered absolute curvature and then growing regions

from each vertex in order of ascending curvature. We choose absolute
curvature because it can detect flat areas more reliably than Gaussian
curvature and is more sensitive to surface bending than mean
curvature.

4.2 Curvature Filtering

Although the size of the neighborhoods used for polynomial
approximation mollifies some of the effects of noise on the estimated
curvature, the curvature can still appear speckled. Therefore, we
suggest smoothing the curvature with a single pass of a median filter.
The implementation of a median filter on mesh curvature is parallel to
its implementation on an image. For each vertex, we sort the absolute
curvature values of its adjacent vertices and then change its curvature
value to the median absolute curvature:

(), ,abs i abs jnew
medianκ κ=    .

A single iteration of this approach produces good results. Note that
the mesh vertices are not moved, but only the curvature of the vertices
is changed. A median filter is appropriate for smoothing the curvature
because it is a robust statistic uninfluenced by outlier noise and
because it does not create new curvature values. The effects of median
filtering on the absolute curvature are shown in Figure 3.

We assume that, at any point during the segmentation process, the
best seed vertex is the one with lowest absolute curvature not already
belonging to any region. Therefore, to find seed vertices, the
algorithm first sorts all the vertices by their filtered absolute curvatures
and then attempts to grow regions from all the vertices in the mesh in
order of increasing absolute curvature, skipping vertices already
assigned to regions.

5. SEED REGION CONSTRUCTION
Once a seed vertex has been selected, the algorithm checks if the

vertex neighborhood is suitable for region growing and, if this is the
case, uses the neighborhood to find a surface approximation for region
growing.

We choose to segment meshes into regions that can be accurately
represented by bicubic polynomials because such functions are easy to
deal with and prove the feasibility of our approach. Clearly, however,
there are surfaces common in engineering, such as cylinders and
spheres, which cannot be properly modeled with such functions.
Nevertheless, many classes of surfaces could be used within the
framework presented here. The requirements are that one can readily
fit the surfaces to an arbitrary mesh, calculate surface normals, and
calculate distances from the surfaces to points in space.

Because the algorithm uses a full bicubic polynomial for region
growing, at least ten vertices are needed for least-squares fitting. In
our implementation, we use at least twenty vertices to ensure
algorithmic stability. The initial neighborhood is constructed by
adding the seed vertex to it, and then adding more vertices based on

 5 Copyright © 2004 by ASME

their topological distance from the seed vertex until the neighborhood
contains more than twenty vertices.

Once the initial neighborhood has been constructed, the seed
vertex normal is used to determine a local coordinate system and a
bicubic polynomial surface is fit to all the vertices in the vertex
neighborhood in this coordinate system (see Eqs. (4) and (5)). The full
bicubic polynomial is

() 00 01 10

2 2
20 11 02

3 2 2 3
30 21 12 03

,

.

h u v a a u a v

a u a uv a v

a u a u v a uv a v

= + +

+ + +

+ + + +

Because the initial neighborhood is grown rather arbitrarily and may,
for example, contain a feature edge, we must test its compatibility with
the approximating surface. We therefore test the 0G and 1G
compatibility of each vertex in the initial neighborhood with the
bicubic polynomial. If any vertices in the neighborhood do not satisfy
the compatibility requirements, the region is rejected. This means
none of the vertices in the seed region are assigned to a region. Then
the algorithm moves on to the next seed vertex. Compatibility is
verified by first checking if

 () 0
0,j i iw h u v ω σ− < , (12)

where jw is the height in the local coordinate system of vertex jx

and h is evaluated at (),i iu v . Then, we calculate the 1G
compatibility. Letting

()(), , ,u v h u v=x

again, we check the condition

()1 1
1cos i ω σ− ⋅ <n n (13)

where in is the vertex normal calculated by Eq. (3) and n is found

with Eq. (6) evaluated at (),i iu v . The coefficients 0ω and 1ω are
empirically determined and, in general, scanner dependent. If we

assume the noise is normally distributed, then the iσ are standard

deviations and, for example, 95% of vertices can be expected to lie

within 02σ of a good polynomial approximation.

6. REGION GROWING

If the surface approximating the initial neighborhood of the seed
vertex passes the compatibility tests, Eqs. (12) and (13), then the
neighborhood becomes a seed region and we begin region growing.
This is a simple process in which vertices adjacent to the region are
added to it if they do not yet belong to a region and if they satisfy the
compatibility inequalities (12) and (13). This is continued until all
vertices adjacent to the region are either incompatible with its
polynomial approximation or are already assigned to other regions.

Once a region finishes growing, we try to enlarge it by fitting a
new bicubic polynomial surface to it. Because the region can be quite
large, however, the seed vertex normal does not necessarily provide a
good basis for a local coordinate system. Therefore, we perform a
linear least squares fit of a plane in the existing local coordinate
system and then use the plane normal to compute a new local
coordinate system. That is, if the plane is given by

() 00 01 10,h u v a a u a v= + + ,
then its normal is

[]01 10

2 2
01 10

, ,1

1

Ta a

a a

− −
=

+ +
n ,

and we fit the new bicubic polynomial surface to the region in the
coordinate system defined by n and the seed vertex position. Note

Figure 4. Final segmentation. Black lines represent unsegmented

areas.

that n must be cast into the global coordinate system. The vertices in
the region might no longer be compatible with the new surface
representation, so the region is cleared and all its vertices are reset to
not belong to any region. Then the algorithm begins growing the
region from the seed vertex again. The goal of this approach is to
obtain the largest possible region with the best possible surface
representation.

We repeat the process of region growing and surface refitting
until the size of the region stops increasing from one iteration to the
next. In our implementation, we stop the algorithm when the size of
the current region is less than five vertices larger than the size of the
previous region. That is, we stop when

 5new oldR R− < . (14)

For the first iteration, oldR is set equal to the size of the initial seed
vertex neighborhood. When a region meets this termination criterion,
it is saved and a new seed vertex is selected. A segmented mesh is
shown in Figure 4.

Once a region finishes growing, we have a group of connected

vertices that are all approximated to known tolerances i
iω σ by a

bicubic polynomial surface in a local coordinate system. When all
seed vertices have been checked, if the compatibility conditions are
properly set, then the mesh is partitioned into connected sets of
vertices representing meaningfully different surfaces.

Speckle Removal

Once the mesh segmentation is complete, the algorithm makes
one pass through the mesh to remove small holes in the regions caused
by outlier vertices. Outlier vertices are caused by spike noise in the
laser-scanner data and lie far outside the bounds assumed by a normal
distribution and would generally not pass the compatibility tests for a
region. Therefore, vertices obviously corrupted by spike noise are
assigned to the region surrounding them. Specifically, after
segmentation is complete, all vertices not assigned to a region, but
surrounded by vertices belonging to a single region, are assigned to
their surrounding region.

7. RESULTS
In Figures 6 and 7, we demonstrate the various steps of our

algorithm on two real data sets. Figure 6 shows an automobile C-pillar
and Figure 7 shows part of an engine. Figures 6(a) and 7(a) merely
demonstrate the noise level of the meshes by simulating reflection
lines on them.

In Figures 6(b) and 7(b), the mesh vertices are colored based on
the noise value calculated in Eq. (9). Vertices where Eq. (8) holds and
the error is set to zero, are shown in blue. Note that strong feature
edges are correctly avoided. The calculated normal errors are

 6 Copyright © 2004 by ASME

0 0.24σ = mm and 1 6.5σ = o for the automobile panel and 0 0.075σ =

mm and 1 8.0σ = o for the engine.
Figures 6(c) and 7(c) show the median-filtered absolute curvature

of the meshes, and Figures 6(d) and 7(d) show the final segmentation.
Note the robust curvature estimation in the presence of noise. For
segmentation, we used 0 1.0ω = and 1 0.6ω = for the automobile

panel and 0 2.5ω = and 1 2.0ω = for the engine. In both cases, the
segmentation produces large segments with clear boundaries.

In Figures 6(e) and 7(e) we demonstrate the smoothness of the
polynomial surfaces approximating each region by merely projecting
each vertex onto the polynomial approximating the region to which it
belongs. Discontinuities at region boundaries and unsegmented areas
are visible.

8. CONCLUSIONS AND DISCUSSION
Our algorithm generates reasonable segmentations of noisy and

smoothed laser-scanner data with little or no user interaction. The
algorithm also works in a few seconds, even on large data sets. In
addition to partitioning the mesh data, the algorithm also creates
surfaces that approximate the data to within known tolerances. The
segmentation and the surfaces associated with it have many
applications, including feature detection, boundary generation for
patch fitting, and surface reconstruction. The segmentation can often
be improved if the laser-data is smoothed first using an algorithm that
preserves sharp edges and feature lines, such as [13].

Although bicubic polynomial surfaces were used to demonstrate
the feasibility of the algorithm, they may not be the best class of
surfaces for segmenting general three-dimensional surface data.
Clearly, cylindrical or spherical surfaces, which occur frequently in
engineering design, cannot be modeled properly with piecewise
bicubic surfaces. Furthermore, in this work we parameterize data
points by projecting them onto a plane, but for a robust
implementation a more general form of parameterization should be
used.

Using the approximating surfaces and their corresponding regions
to find feature lines and inflection lines is a promising direction of
research. The segmentation can also be used for feature detection.
The region boundaries and approximating surfaces might also be used
to define patch boundaries for part design. Indeed, the region
boundaries themselves can be segmented into sets of connected mesh
edges represented by piecewise smooth space curves. This is
described for images and range data in [2]. Furthermore, one might
also use inflection lines calculated from the approximating surfaces to
define patch boundaries.

Finally, the segmentation can be used to reconstruct piecewise
smooth surfaces from noisy data. The segmentation creates several
smooth surfaces that approximate the mesh with high accuracy. The
region boundaries can then be examined to determine whether adjacent
regions merge smoothly or along sharp edges. Adjacent surfaces with
very similar surface normals along their boundaries could be blended
and those with differing normals could be connected along their
intersection, creating a sharp edge. These surfaces could then be used
to remesh the part.

ACKNOWLEDGEMENTS
This work is based in part on work supported under an

NSF CAREER Award (No. 9985288). We would like to thank
Konica-Minolta and Honda for the data sets used in this work.

REFERENCES
[1] Besl, P. J. and Jain, R. C., 1988, "Segmentation Through

Variable-Order Surface Fitting," IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10, pp. 167-192.

[2] Besl, P. J., 1988, Surfaces in Range Image Understanding,
Springer -Verlag, New York.

[3] Djebali, M., Melkemi, M. and Sapidis, N., 2002, "Range-Image
Segmentation and Model Reconstruction Based on a Fit-and-
Merge Strategy," ACM Symposium on Solid Modeling and
Applications, pp.

[4] Sapidis, N. S. and Besl, P. J., 1995, "Direct Construction of
Polynomial Surfaces from Dense Range Images through Region
Growing," ACM Transactions on Graphics, 14, pp. 171-200.

[5] Mangan, A. P. and Whitaker, R. T., 1999, "Partitioning 3D
Surface Meshes Using Watershed Segmentation," IEEE
Transactions on Visualization and Computer Graphics, 5, pp.
308-321.

[6] Pulla, S., Razdan, A. and Farin, G., 2001, "Improved Curvature
Estimation for Watershed Segmentation of 3-Dimensional
Meshes," Arizona State University, Tech. Rep.

[7] Page, D. L., 2003, "Part Decomposition of 3D Surfaces," Ph. D.,
University of Tennessee, Knoxville.

[8] Wu, K. and Levine, D., 1997, "3D Part Segmentation Using
Simulated Electrical Charge Distributions," IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, pp. 1223-1235.

[9] Lesage, D., Leon, J.-C. and Véron, P., 2001, "Discrete Curvature
Approximations for the Segmentation of Polyhedral Surfaces,"
DETC 2001, Pittsburgh, PA, pp.

[10] Press, W., Teukolsky, S., Vetterling, W. and Flannery, B., 1997,
Numerical Recipes in C, Second Edition, Cambridge University
Press, New York, NY, USA.

[11] Golub, G. and Loan, C. V., 1996, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, MD.

[12] McIvor, A. and Valkenburg, R., 1997, "A Comparison of Local
Surface Geometry Estimation Methods," Machine Vision and
Applications, 10, pp. 17-26.

[13] Vieira, M., Shimada, K. and Furuhata, T., 2004, "Smoothing of
Noisy Laser Scanner Generated Meshes Using Polynomial Fitting
and Neighborhood Erosion," Journal of Mechanical Design (to
appear).

 7 Copyright © 2004 by ASME

(a) Reflection lines on noisy mesh.

(c) Filtered absolute curvature.

(b) Estimated noise.

(d) Segmentation

(f) Reflection lines on approximating surfaces

Figure 6. The different steps of our algorithm on a noisy laser scan of an automobile C-pillar. 99,970 vertices.

 8 Copyright © 2004 by ASME

(a) Reflection lines on noisy mesh.

(c) Filtered absolute curvature.

(b) Estimated noise.

(d) Segmentation.

(f) Reflection lines on approximating surfaces.

Figure 7. The different steps of our algorithm on a noisy laser scan of an engine part. 278,667 vertices.

