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Abstract

We introduce and formally define a new geometric mod-
eling operation unsweep(E, M) which, given an arbi-
trary n-dimensional subset of FEuclidean space F and
a general motion M, returns the subset of E that re-
mains inside F under M. This new operation is dual
to the usual sweeping operation and has important ap-
plications in mechanical design. When M is a trans-
lation, unsweep(E, M) naturally reduces to the usual
Minkowski difference of E and the trajectory generated
by the inverted motion M. We show that unsweep has
attractive computational properties and give a practi-
cal point membership test for arbitrary general motions.
By duality, the established properties of unsweep can be
used to develop a practical point membership test for
general sweeps.

1 Introduction

1.1 Sweeps in modeling

Sweeping a set of points along some trajectory is one
of the fundamental operations in geometric and solid
modeling. If M is a path of configurations for a moving
set of points 5, then the sweep of S along M is the set
of points swept (or occupied) by S at some time during
the motion. Formally,

sweep(S, M) = U S (1)

where S denotes set .S positioned according to q. Sweeps
are considered to be one of the basic representation
schemes in [17], and have numerous applications in graph-
ics, geometric modeling, mechanical design and manu-
facturing, and motion planning. Sweeps are used ex-
tensively to construct and model surfaces and solids in
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both academic and commercial systems [24, 7, 2]. In
graphics, allowing object S to deform as it moves along
M is often used to generate complex scenes and visual
effects [20, 21]. In mechanical design, sweeps of moving
parts can be used for collision detection [6] in assemblies.
Sweeping a solid (cutter) along the specified trajectory
(tool path) is the preferred method of NC machining
simulation[25, 14]. Finally, sweeps arise naturally in
most situations involving moving bodies, e.g. in studies
of robot workspace [3].

Despite their usefulness, properties of general sweeps
(notably, their validity and computational properties)
are not well understood. Several methods for generating
candidate surfaces bounding the sweep are known [1,
12, 21]. But general and reliable procedures for a point
membership classification (PMC) [23] to determine if a
given point is in, on, or out of the sweep defined by
expression (1) appear to be identified only in special
and restricted situations [7]. Numerous approaches to
computing sweeps have been published, including:

e restricting the type of the moving object 5, for
example to a ball, a convex polyhedron, or a pla-
nar cross-section that remains orthogonal to the
trajectory;

e allowing only simple motions M that prevent self
intersections in the sweep, or limiting them to sim-
ple translations and rotations;

e formulating PMC procedures in terms of heuristic
numerical sampling and searching algorithms;

e approximating expression (1) by a discrete union
of S computed at a finite number of locations g;

e using rendering methods to compute the image of
the sweep without computing the complete repre-
sentation of the sweep;

e combinations of some or all of the above.

In this paper, we introduce a new operation called
unsweep that is dual to the general sweep and has a
number of practical applications. It is important that
unsweep comes with a relatively straightforward PMC



procedure. By duality, the same PMC procedure ex-
tends to general sweeps, while all known results and
methods for dealing with sweeps also apply to the dual
unsweep.

1.2 Dual of sweep

If set S and motion M are defined as before, and M is
the inverted motion', then the dual of the sweep is ob-
tained by changing union to intersection and replacing
motion M by the inverted motion M in expression (1):

unsweep(S, M) = ﬂ S (2)

qENM

The precise nature of this duality is explained in section
3.2. Definition (2) is not particularly revealing: it may
not be obvious why this new operation is useful, why it
may possess computational advantages over sweep, and
what is the precise relationship between the two dual
operations. We study these and other related issues
below and show that:

1. unsweep(S, M) is the largest set of points that re-
mains inside S under M

2. PMC of a point p against unsweep(.S, M) reduces
to classifying the trajectory of p under M (a curve)
against the set S;

3. 1f X° denotes the complement of a set X, then
the relationship between the two dual operations
is given by:

[unsweep(S°, M)]° = sweep(S, M) (3)

The first property suggests that unsweep has many prac-
tical applications in modeling; the second property in-
dicates that it can be computed effectively; and the
third property extends the computational advantages
of unsweep to general sweeps.

1.3 Example application

Packaging is one of most common problems in mechani-
cal design. Static interference of fixed parts, say within
a single assembly or enclosing envelope?, can be deter-
mined in a straightforward fashion by computing inter-
section of the corresponding solid models. Packaging
of moving parts is more difficult but can be formulated
using sweep and now unsweep operations. A typical
situation is shown in Figure 1(a). Given a completely
designed part S and the envelope F, S has to fit inside
FE while it 1s moving according to the motion M. A
common way to approach this problem has been to test
if ENsweep(S, M) =0, as illustrated in Figure 1(b).

1 The concepts of motion and inverted motion are explained
in section 2.1.

?In this paper the term ‘envelope’ is synonymous with ‘con-
taining set’ and has no relationship to the theory of envelopes.

In the general case, this test may be difficult to
implement due to computational limitations of sweeps
mentioned above. Even when fully implemented, the
result of the test is binary: ‘yes’ or ‘no’, and, when the
answer is ‘no’, it does not suggest how the moving part
should be modified to fit inside the envelope. For this
task, the best tools available today to human designers
are their experience and intuition. This approach to de-
sign almost always forces inefficient and costly iterations
in the design process [8].

Perhaps a more efficient way to approach this design
problem is to ask what is the largest part S that would
fit inside E under the specified motion M — and use
this information in deciding how to shape the final prod-
uct. As is often the case, the complexity of this design
problem usually exceeds the human intuition and/or ex-
perience. The solution to this problem is readily found
by computing unsweep(E, M) and is shown in Figure
1(c).

The above example is only one of many applica-
tions of the new operation. In general terms, unsweep
gives a new method for creating and modifying geomet-
ric shapes and provides a new computational utility for
many motion-intensive applications.

1.4 Scope and outline

Our main goals are the rigorous definition of unsweep,
exploring its computational properties in a general set-
ting, and understanding the relationship between the
operations of sweep and unsweep. For the large part,
we will avoid putting restrictions on the generator set
S or motion M. Additional properties, such as regular-
ity, may be required for specific applications; they are
outside of the scope of this paper. We chose to present
our results in the set-theoretic terms; in this sense, they
are independent of a particular choice of representation
schemes for S and M and are applicable to all valid and
unambiguous representations. Representational issues
are important for effective implementation of unsweep,
but the range of possibilities is too great for discussion
in this paper. We only mention some of them.

The paper is organized as follows. In section 2 we ex-
plain that every moving set of points can be viewed and
modeled in two distinct ways; this lead to the notions
of motions and inverted motions, and the correspond-
ing trajectories of the moving points. The introduced
notions are then used to reexamine the usual concept
of sweep and to define the dual operation of unsweep.
The precise nature of this duality is identified in section
3. Section 4 deals with computational issues, includ-
ing point membership classification, several strategies
for implementing unsweep and some 3-dimensional ex-
amples. The concluding section 5 briefly discusses the
significance of our findings and a number of promising
extensions of this work.
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Figure 1: The moving part S has to fit within the given envelope F

2 Formulation

2.1 Motions and trajectories

Consider a set of points .S with its own coordinate sys-
tem Fs moving in a d-dimensional Fuclidean space W
with respect to some global fixed coordinate system Fyy.
Following the notation in [10], we define the motion
M(t),t € [0,1] as a one-parameter family of transfor-
mations in the higher-dimensional configuration space
C. For the purposes of this paper, “motions” and “trans-
formations” are interchangeable and are commonly rep-
resented by matrices, as discussed in section 4.2. We
mostly use rigid body motions for illustration purposes
but, except when noted, all discussion and results apply
to general non-singular affine transformations in E9.
At every instant ¢ = a, the original point z of S
moves to a new location that is determined by the trans-
formation M (a).
to define the transformed (set of) points as

We will use the superscript notation

SM@ = M(a)S (4)

The transformation g € M (¢) for some instantaneous
value t determines the position and orientation of Fg
with respect to Fyy at that instance and therefore de-
termines the coordinates of every point ¢ of the moving
set S with respect to Fyy; by definition, a point z € S
is located at £ with respect to Fyy.

In the special, but common, case of a rigid body
motion in the three-dimensional Euclidean space, each
transformation M (a) specifies rotation and translation

of S at time a with respect to Fw. A rigid body mo-
(d+1)

figuration space C. Mathematical properties of such a
configuration space are well understood [10].

For a range of values of ¢, M(t) is a subset of the
configuration space C. For brevity we may denote the
set M(t), t € [0,1] simply as M. A motion M specifies
how the moving coordinate system Fs moves with re-
spect to the fixed coordinate system Fyy. Every point
x of set S moves with respect to Fyy according to M,
as is illustrated in Figure 2(a).® As ¢ goes from 0 to
a, the moving point M) sweeps, with respect to the
fixed frame Fyw, a set of points T} called the trajectory
of # and defined as

To=M(t)e = [ ] 2 (5)

Each instantaneous transformation M(a) in equa-

tion (4) has a unique inverse M (a) such that & = M (a)[M (a)x].

Given a transformation M(t) for a range of values of
t € [0,1], we will call transformation M () inverted if it
is the inverse of M(t) for every instance of ¢.

Consider the point y as being the copy of point z € .S
in Fy at the initial configuration. Point y is fixed in
Fw and does not move with the object S, but rather
it moves relative to S. To an observer placed at the
origin of Fg, the moving point z € S will appear to be
fixed while the fixed coordinate system Fyy and point ¥y
fixed in Fyw will appear to be moving according to the
inverted motion M(t)

In other words, the moving observer will see the in-
verted trajectory (Figure 2(b))

To =Mt =[] 2 (6)

qENM

tion in a d-dimensional space is determined by d 5
independent degrees of freedom, as a path in the con-

3We use two-dimensional examples for clarity, but the same
arguments hold in any d-dimensional space.
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Figure 2: Motions and trajectories

Note here that we introduced point y only to illus-
trate the difference between what the observer sees from
the two coordinate systems Fyy and Fs.

To paraphrase, the trajectory of the moving point
x, observed from Fyy, is generated by the motion M,
while the trajectory of the same point x, observed from
Fs, is generated by the inverted motion M. Intuitively,
T, represents the trace left by moving point x as seen
from Fyy, while Tm is the trace of z as seen from Fs.
Therefore, observed from the fixed coordinate system
Fw, the points x of S are moving according to M while,
observed from the moving coordinate system Fs, the
‘world’ appears to be moving according to M.

For example, when M is a pure translation, the two
trajectories T, and T, are simply reflections of one an-

other with respect to the origin, i.e. T, = —T, [18].

2.2 Sweep

Following the above notation and definitions from equa-
tions (4) and (5), the ‘trace’ left by a set of points S that
is moving according to M (¢), t € [0, 1], is given by

M(t)s = J s (7)

qEM

which is immediately recognized as definition (1) of the
general sweep given earlier. A rectangular 2-dimensional
set S 1n general motion M with respect to a fixed coor-
dinate system is shown in Figure 3(a). This formulation

assumes that the sweep is computed from the fixed co-
ordinate system Fyy, ‘observing’ the moving coordinate
system Fs.

We could also define sweep, as observed from the
moving coordinate system Fg, by

sweep(S, M) = U S (8)

The set of points defined by equation (8) is quite dis-
tinct from that defined in equation (7). Figure 3(b)
shows the sweep of set S that moves according to the
inverted motion M. We will see in section 3.2 that there
is also a computationally convenient interpretation of
the usual sweep defined by equation (7) in terms of the
inverted trajectories of moving points (i.e. as observed
from the moving system Fs). Notice that, in both def-
initions of sweep, the trajectories of distinct points of
S generated by the same transformation M (¢) need not
be congruent, and, in general, the relationship between
these trajectories is not simple. In section 3.1, we will
consider the case when M is a pure translational mo-
tion, and all points of S do move on the trajectories that
are translation invariant.

2.3 Unsweep

Consider now a set of points F fixed in the global coor-
dinate system Fyy and a different set F' of points that
are moving according to some transformation M (t), t €
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Figure 3: Sweeping a set according to motions M and M

[0,1]. Figure 4(a) shows a simple two-dimensional ex-
ample where sets F' and E are initially the same set of
points. Initially, at ¢ = 0, the two sets coincide, i.e.
FMO = B As illustrated in Figure 4, some of the
points z € F will travel outside of E, while others will
never leave E. We now define the unsweep(E, M) as
the set of all those points  that remain inside F for all
values of t. Formally,

unsweep(E, M) = {z | M0 e B vie o, 1]} 9)

By this definition, unsweep(E, M) is well-defined and
is the largest subset of I that stays inside F while F'
is moving according to M(t). The characterization of
unsweep in definition (9) may not provide an insight in
the nature of unsweep or possible methods for comput-
ing the results of this operation. An equivalent, but
more convenient, definition is obtained by observing
that the set ™) ¢ ¢ [0,1], is simply the trajectory
Ty of point x. Therefore,

unsweep(E, M) ={z | T. C E} (10)

The condition in equation (10) is illustrated in Fig-
ure 4(a). As long as the trajectory T of point = stays
inside of E, # € unsweep(F, M), while if T, intersects
the complement set £° then point = ¢ unsweep(E, M).
In section 4.1 we will use this observation to develop a
rigorous point membership classification (PMC) proce-
dure for unsweep(E, M).

We can also characterize unsweep by reversing the
roles of the stationary set £ and moving points © € F'
as illustrated in Figure 4(b). It should be clear from the
discussion in section 2.1 that keeping all points x € F
fixed, the same relative motion between F' and E will be
described by a set E moving according to the inverted
motion M(t) At any instant ¢ = a, the moving set will

occupy points EM(@) | From these points, only the set

FAEM@ may remain inside the set F'. Since this inter-
section condition must hold for all values of ¢, we obtain
the third equivalent characterization of unsweep that is
identical to the dual of sweep defined by expression (2)
in section 1.2.

Finally, note that the set of points

unsweep(E, M) = ﬂ EY={z | T, C E} (11)
qEM

is not the same set as unsweep(E, M). Figure 5(a)
shows the unsweep(E, M), i.e. the points of set F' are
moving in pure translation according to M or set E
moves according to M, while Figure 5(b) shows
unsweep(E,M) when the points of set ' are moving
in pure translation according to M or set E moves ac-
cording to M.

3 Duality

3.1 Case of Translational Motion

The dual relationship between sweep and unsweep is
easier to see in the restricted case when M (t) is a pure
translation. In this case, each point & of the moving set
S sweeps the trajectory

T, = o+ M(t), t €[0,1]

where both z and M (¢) have vector values represented
with respect to the fixed coordinate system Fw. If x,y €
S are two distinct points with trajectories T, and Ty,
respectively, then it should be clear that

Tr:Ty@(x_y)

where @ is Minkowski (vector set) addition with the
usual properties [18]. In other words, every point of S
moves on the same trajectory T' that is translation in-
variant and is in fact equivalent to the set of translations
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M. This implies that set S moves without changing its
orientation and that

sweep(S, M) = U S{=S¢T (12)
qeT

is also translation invariant. Similarly, using definition
(2) of unsweep in terms of the moving set S on inverted
trajectory, we have

unsweep(S, M) = ﬂ SP=SoT (13)

peT

where & is the usual Minkowski difference operation
[18]. The rightmost expression is sometimes also called
erosion and is the set of points {y € S | T, C S}, which
is consistent with definition (9) of unsweep. Notice that
T =-Tis simply a reflection of T' with respect to the
origin of the frame Fy and is again translation invari-
ant.

Minkowski operations have many useful properties
and are used extensively in geometric modeling, mo-
tion planning, and image processing [4, 10, 18, 11, 22].
In particular, definitions of Minkowski operations imply
that @ and © are dual to each other via

SeT =(Son° (14)

with X denoting the usual complement of set X.

3.2 General case

Many properties of Minkowski operations depend on the
translation invariance and do not generalize to sweeps
and unsweeps under motions other than translations.
But a number of Minkowski properties follow strictly
from the set-theoretic considerations and definitions.
One would expect that all such properties should ex-
tend to more general motions. Indeed, the duality of
operations @ and & is one such property that general-
izes to the duality of the operations sweep and unsweep
as defined in this paper.

Let us rewrite equation (14) in set theoretic terms

as
quT s9 = [ﬂqu (Sc)q] )
or (15)
(quT 59 = ﬂqu (59)°
since (S9)? = (S9)°. But the last equality, and hence
the duality of @ and &, is simply a restatement of the
usual DeMorgan’s laws for operations of union and in-
tersection generalized for arbitrary number or families
of sets [9]. The straightforward application of the same
law in the case of general motion M yields

(UqGM 59" = ﬂqu (59)°,
or (16)
[sweep(S, M)]° = unsweep(S°, M)

which is equivalent to the relationship (3).
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tablished duality characterizes sweep(.S, M) in terms of
points moving according to the inverted motion M as
observed from S° (or equivalently from S). In other
words, sweeping (unsweeping) set S with motion M is
equivalent to unsweeping (sweeping) the complement of
S with the inverted motion M and complementing the
result.

4 Computational Issues

4.1 PMC for unsweep and sweep

Point Membership Classification (PMC) is a procedure
for deciding whether a given point z is inside, outside,
or on the boundary of a set S [23]. It has its roots in
solid modeling, and set S is usually a d-dimensional solid
(d=1,2,3). The PMC procedure is a sign of ‘informa-
tional completeness’ of a representation scheme [17], in-
dicating that any geometric property can be computed
at least in principle. As a matter of practical impor-
tance, PMC is used in almost all geometric modeling
algorithms, including boundary evaluation, discretiza-
tion, and rendering. PMC is a special case of the Set
Membership Classification function that, given a candi-
date set X and S computes (regularized) portions of X
on S, X in S, and X outside of S [23].

We make no assumptions on whether S is regular or
not. The operations of sweep and unsweep, as defined
in this paper, may result in sets that are not regular,
i.e. dimensionally inhomogeneous sets with “dangling”

faces, edges or isolated points. Closed regular sets are
not closed under Minkowski difference (see example in
[15]), and it is easy to construct similar examples show-
ing that unsweep of a regular set S may not be regular.
Regularity, other topological, and set-theoretic proper-
ties are outside of the scope of this paper. Instead we
show how to use the definitions of unsweep to obtain a
PMC procedure for the general unsweep (and then gen-
eral sweep). Accordingly, we generalize the standard
PMC notions in a manner consistent with definitions in
[23]. We will say that point x is ‘in’ set S when there
is an open neighborhood of & contained in .5; point x
is ‘out’ of S when some open neighborhood of # is con-
tained in the complement set S°; and z is ‘on’ S if every
neighborhood of x intersects both S and S°. The last
condition implies that € 95 is a boundary point; but
z may or may not belong to S, because set S could be
open, closed, or neither.

The basis for a sound PMC procedure is supplied by
equations (9)-(10), and an appropriate interpretation
of the moving point trajectory T,. The PMC defini-
tions imply that we need to consider not only a moving
point x, but also its open neighborhood ball B(xM(t))
of points that is transformed with z. To perform PMC
on unsweep(E, M) we need to consider three situations:

1. If trajectory 7, remains in the interior iS of S5,
then point ™ ) remains inside S for all values of
t during the motion M(t) that generated T;. Fur-
thermore, there is an open neighborhood B(xM(t))



of points that also remain in the interior iS5 of S
for all ¢ (see Figure 6 (a)). It follows that in this
case x is ‘in’ unsweep(S, M).

2. Whenever T} intersects the boundary 0.9, the neigh-
borhood B(xM(t)) gets ‘trimmed’ by 35, as illus-
trated in Figure 6 (b). This implies that no open
neighborhood of z is contained in unsweep(S, M),
and therefore x cannot be ‘in’; thus, £ must be
either ‘out’ or ‘on’ unsweep(.S, M).

3. Additional neighborhood analysis to distinguish
between ‘on’ and ‘out’ cases depends on proper-
ties of set S (open, closed, dimension) and tra-
jectory T, (whether it intersects 85 transversally,
whether it remains inside S, etc.) In all cases,
the analysis amounts to determining whether the
neighborhood B(z™ (") of the moving point gets
‘trimmed’ down to the empty set 0. If so, the point
z must be ‘out’ of unsweep(S, M). Otherwise, z
remains ‘on.’

For example, let us consider a common case when S
is any closed set. As long as the trajectory 7T, does not
‘go’ outside of S, point x cannot classify ‘out’. There-
fore, the PMC procedure reduces to the straightforward
classification of a curve T(z) against a representation for
set S:

mn, T, CiS
PMC[z,unsweep(S, M) =4 out, T, NS #0
on, otherwise
(17)
and it remains correct irrespective of homogeneity or di-
mension of S — assuming that boundary, interior, and
complement are all defined relative to the same univer-
sal set.
By duality, we can use the same technique to con-
struct a PMC procedure for any sweep(.S, M). Since

Osweep(S, M)] = Ounsweep(S°, M)] (18)

it is sufficient to classify point z against unsweep(S°¢, M)
and simply exchange ‘in’ and ‘out’ results. Notice
however that whenever S and sweep(S, M) are closed
sets, set S¢ and unsweep(S°, M) are open, and the PMC
conditions are slightly different from (17) above. Since
the boundary 9Y of an open set Y is a subset of Y¢,
the condition T} ﬂYc #  may imply that point z is
either ‘on’ or ‘out’ of Y. In this situation, additional
neighborhood analysis may be required to distinguish
between the two cases. This problem does not arise in
solid modeling applications when all sets are regular-
ized.

Finally note that, when .S is a planar cross-section
moving in E®, this approach for PMC on sweep(S, M)
yields the procedure proposed in [7].

4.2 Representing Motions and Trajec-
tories

General affine transformations in E¢ can be represented
as linear transformations in projective space using ho-
mogeneous coordinates and (d 4+ 1) x (d + 1) matrices
[5]. Thus, if motion M (t) is given by a matrix A(¢),
then the inverted motion M is given by the inverse of
this matrix A™'(¢). In the case of a rigid body motion
in E*, we have

A | em  Tw |
0 0 0 1
and (19)
A7) = o'(t) —0"(t)T(t)
0 0 0 1

where ©(t) and 7 (t) represent the rotational and trans-
lational components of the motion M(t). In the case
of pure rotation, 7 (¢) = 0, and A™'(¢) is obtained from
A(t) by replacing the orthonormal sub-matrix ©(t) with
its transpose @7 (t). When M(t) is a pure translation,
O(t) is the identity, and A™'(¢) is obtained from A(t)
by replacing 7 (t) with its reflection —7 (¢).

If a point x is represented by a vector ¢, and a motion
M(t) is represented by a matrix A(t), the trajectory
T, can be written in parametric form simply as A(t) -
¥. The parametric form of the curve T, is suitable for
computing the intersection of 7T, with the boundary of
a given set (typically solid) S, as needed for the PMC
procedure developed above. In the general case, this
representation of T, would use trigonometric functions,
and 1t may be useful to consider under what conditions
Ty can be re-parameterized in a computationally more
convenient form.

4.3 Implementation strategies

The two methods of defining unsweep(S, M) naturally
suggest two distinct approaches to computing the re-
sulting set of points.

o Definition (2) gives a method for approximating
unsweep(S, M) by a finite intersection of sets SM ()
positioned at discrete time intervals according to
the inverted motion M. Intuitively, at every time
step t = a, the “unwanted” portion of SM(@) that
protrudes outside of SMO) s eliminated through
the intersection operation.

This method is easy to implement in any system
that supports the desired transformations (e.g. rigid
body motions) and Boolean set operations.
When S is a solid, good performance and quality
of the approximations can be obtained by using
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Figure 6: Neighborhoods of points moving on trajectories generated by motion M

raycasting software and hardware techniques, as
described in [14, 13].

The second formulation defining unsweep(S, M) in
terms of trajectories of moving points (equation
(10)) leads to a well-defined PMC procedure as
described above. Ability to perform PMC can be
used for computing unsweep(.S, M) either exactly
(within the machine precision) or approximately.
For example, the steps in computing the exact
boundary representation of unsweep are similar to
the usual procedure for boundary evaluation [16]:

1. generating surfaces bounding the unsweep;

2. intersecting the generated surfaces to produce
a set of potential candidate faces;

3. testing which of the candidate faces lie on the
boundary of unsweep.

The shared boundary of sweep and its dual
unsweep (equation (18)) implies that all the meth-
ods used in generating bounding surfaces for com-
puting sweep ([12, 1, 21]) are also applicable to
computing unsweep. The degree of difficulty of
the second step clearly depends on the types of
surfaces generated in the first step. The third step
amounts to selecting a representative point in each
candidate face and testing it against unsweep(S, M)
using the PMC procedure, as described above in
section 4.1.

The PMC procedure also opens the doors to the
standard approximation methods based on various
cell decompositions, such as piecewise linear tes-
selations, octrees, and marching-cube algorithms

[5]:

By duality, all of the above methods are also applica-
ble to sweep. Specific representational choices and com-
putational strategies will depend on properties of S and
M. For example, it makes little sense to approximate
sweep(S, M) by discrete union or intersection when S
is a planar cross-section moving in E?, and it may not
be feasible to compute the exact boundary representa-
tion when S is a solid bounded by parametric surfaces
of high degree.

4.4 Examples

Several two-dimensional examples of unsweep(E, M)
already appeared in the previous sections of this pa-
per. Figure 1(c) shows unsweep of a simple rectan-
gular envelope by a clockwise rotation. Figures 5(a)
and (b) show the difference between unsweep(E, M) and
unsweep(E, M) with the same L-shaped envelope F; M
is a translation along a circular arc, and M is the trans-
lational motion along the reflected arc with respect to
the origin. These restricted situations, which involve
only polygonal envelopes and simple translations or ro-
tations illustrate that the results of unsweep are not
always intuitive and would be difficult to obtain manu-



ally.

Several simple three-dimensional examples of unsweep
are shown in Figure 7. In Figure 7(a) the envelope F is
a cylinder and the motion M is a rotation around the
axis aligned with the center of the shown hole (paral-
lel to the z-axis and perpendicular to the axis of the
cylinder). The computed set unsweep(E, M) is shown
inside the cylinder and represents the largest subset of
E which remains inside F while rotating around the
rotation axis in the counterclockwise direction. Figure
7(b) shows another example where the envelope E is the
union of a cylinder and a sphere and M is inverted from
a ‘helical’ motion M that is given by:

8(t)=t, =(t)=Rcost, y(t)= Rsint, z=10¢,
where 8 specifies the rotation around z-axis. In Figure
7(c), E is a cylinder and M is a sequence of two rota-
tions: first 1 radian rotation around the z-axis (1 0 0),
followed by another 1 radian rotation around the axis
aligned with (0 1 1). The two axes are positioned so
that they intersect the axis of the cylinder at the same
point (not shown). It is easy to see that, as the en-
velope and motions become more complex, predicting
the shape of unsweep(E, M) becomes very difficult (if
not impossible) without proper computational support.
This may explain why unsweep has not been formulated
or used until now. Note that, based on equation (2) the
unsweep operation preserves convexity of the envelope;
thus, if E is convex, then unsweep(E, M) will also be
convex as in Figures 7(a) and 7(c).

Figure 7(b) shows that, in general, unsweep(.S, M)
does not have to be convex, but, intuitively, it will never
be “any less convex” than the generator set S.

The final example in Figure 7(d) shows a transla-
tional sweep of a simple solid S. The solid is constructed
as the union of a cube and a cylinder, and the motion
is a translation in the direction of vector (1 1 1). The
shown sweep was actually computed as unsweep of the
complemented set, using the duality equation (16). For
practical purposes, the role of the universal set is played
by a bounding box that is large enough to contain the
sweep. Then the (relative) complement of S is simply
the set difference of the bounding box and S.

5 Conclusions

5.1 Sweep or unsweep?

It may be tempting to think of unsweep as the inverse
of sweep. This is certainly not true, in the sense that
unsweep[sweep(S, M), M] is equal to S only in very spe-
cial situations — just like (A @ B) & B is usually not
equal to A for Minkowski operations [18]. While the
notion of ‘inverse sweep’ seems to arise naturally in
some applications[19], it does not appear to be well-
defined in general. As a dual of sweep, the operation
of unsweep does appear to solve some ‘inverse’ practical
problems, such as design problems described in section
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1.3. It is quite unusual that the ‘inverse’ problem ap-
pears to be significantly easier than the usual ‘direct’
problem of sweeping a moving part. Why should it be
easier to perform PMC on unsweep than on sweep, even
though sweeping usually appears to be more natural
than unsweeping? Compare the informal descriptions
of the two operations:

sweep: the set of points occupied by object S at some
time during its motion; and

unsweep: the set of points that remain inside set S at
all times during their motion.

The above characterization of sweep may be more natu-
ral, and it suggests methods for generating the surfaces
swept by boundaries of S as it moves; but it intrinsi-
cally suggests a search. By contrast, the description
of unsweep naturally lends itself to an intersection or
containment test, but it does not refer to a given mov-
ing object or its boundaries. The duality between the
two operations says that the two characterizations are
equivalent in the following sense: a stationary point x
belongs to the sweep of moving S if and only if the tra-
jectory of x as seen from S penetrates S at its initial
position.

Apparently, for the same relative motion, the choice
of which object is moving and which is stationary can
make a world of difference from the computational point
of view. We expect that the combined properties of
sweep and unsweep should lead to other new algorithms
and applications.

5.2 Significance and Extensions

For the most part, we avoided making any assumptions
about set S and motion M. This implies that our results
are general and are widely applicable. The research
described in this paper advances the field of geomet-
ric modeling and applications in at least three distinct
ways:

e As a concept, unsweep is a new tool for creating
and modifying geometric shapes. In addition to
packaging problems already mentioned in section
1.3, we anticipate many other applications in man-
ufacturing planning, simulation, mechanical de-
sign, and analysis of moving parts and assemblies;

o We have shown that unsweep comes with attrac-
tive computational properties, including a rela-
tively straightforward PMC procedure and natu-
ral computing strategies, both exact and approxi-
mate;

e Finally, unsweepfills in a missing link in the theory
and practice of geometric modeling. As a dual
of sweep, it complements the theory of sweeps,
provides the previously unavailable computational
support, and strengthens the formal properties of
sweeps as a representation scheme.
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Figure 7: Examples of unsweep applications:

(a) E is a cylinder and M is a rotation around the axis aligned with the center of the shown hole.
(b) E is the union of a cylinder and a sphere and M is inverted from a ‘helical’ motion M.

(c) E is a cylinder and M is a sequence of two rotations.
(d

) A translational sweep of a simple solid S: the solid is constructed as the union of a cube and a cylinder.




The generality of our approach also means that a
number of specific issues have not been discussed and
are yet to be addressed. These include set-theoretic and
topological properties of unsweep, detailed PMC proce-
dures for specific sets (e.g. curves, planar, solid, open)
and motions (translations, rotations, general rigid, with
deformation, etc.), regularization, and others. Extend-
ing other properties of Minkowski operations to sweep
and unsweep may also prove interesting and useful.

In the spirit of [17], we attempted to keep the discus-
sion ‘representation-free.” Representational choices for
sets, motions, and trajectories are many and are clearly
important; the specific choices may depend on the rel-
ative importance of simplicity, efficiency and compati-
bility with existing systems as well as other pragmatic
considerations. This work is intended to provide the
starting point for such explorations.
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