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Abstract

We introduce and formally de�ne a new geometric mod�
eling operation unsweep�E�M� which� given an arbi�
trary n�dimensional subset of Euclidean space E and
a general motion M � returns the subset of E that re�
mains inside E under M � This new operation is dual
to the usual sweeping operation and has important ap�
plications in mechanical design� When M is a trans�
lation� unsweep�E�M� naturally reduces to the usual
Minkowski di�erence of E and the trajectory generated
by the inverted motion 	M� We show that unsweep has
attractive computational properties and give a practi�
cal point membership test for arbitrary general motions�
By duality� the established properties of unsweep can be
used to develop a practical point membership test for
general sweeps�

� Introduction

��� Sweeps in modeling

Sweeping a set of points along some trajectory is one
of the fundamental operations in geometric and solid
modeling� If M is a path of con�gurations for a moving
set of points S� then the sweep of S along M is the set
of points swept �or occupied� by S at some time during
the motion� Formally�

sweep�S�M� 

�
q�M

S
q ���

where Sq denotes set S positioned according to q� Sweeps
are considered to be one of the basic representation
schemes in ��
�� and have numerous applications in graph�
ics� geometric modeling� mechanical design and manu�
facturing� and motion planning� Sweeps are used ex�
tensively to construct and model surfaces and solids in
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both academic and commercial systems ���� 
� ��� In
graphics� allowing object S to deform as it moves along
M is often used to generate complex scenes and visual
e�ects ���� ���� In mechanical design� sweeps of moving
parts can be used for collision detection ��� in assemblies�
Sweeping a solid �cutter� along the speci�ed trajectory
�tool path� is the preferred method of NC machining
simulation���� ���� Finally� sweeps arise naturally in
most situations involving moving bodies� e�g� in studies
of robot workspace ����

Despite their usefulness� properties of general sweeps
�notably� their validity and computational properties�
are not well understood� Several methods for generating
candidate surfaces bounding the sweep are known ���
��� ���� But general and reliable procedures for a point
membership classi�cation �PMC� ���� to determine if a
given point is in� on� or out of the sweep de�ned by
expression ��� appear to be identi�ed only in special
and restricted situations �
�� Numerous approaches to
computing sweeps have been published� including�

� restricting the type of the moving object S� for
example to a ball� a convex polyhedron� or a pla�
nar cross�section that remains orthogonal to the
trajectory�

� allowing only simple motions M that prevent self
intersections in the sweep� or limiting them to sim�
ple translations and rotations�

� formulating PMC procedures in terms of heuristic
numerical sampling and searching algorithms�

� approximating expression ��� by a discrete union
of Sq computed at a �nite number of locations q�

� using rendering methods to compute the image of
the sweep without computing the complete repre�
sentation of the sweep�

� combinations of some or all of the above�

In this paper� we introduce a new operation called
unsweep that is dual to the general sweep and has a
number of practical applications� It is important that
unsweep comes with a relatively straightforward PMC



�

procedure� By duality� the same PMC procedure ex�
tends to general sweeps� while all known results and
methods for dealing with sweeps also apply to the dual
unsweep�

��� Dual of sweep

If set S and motion M are de�ned as before� and 	M is
the inverted motion�� then the dual of the sweep is ob�
tained by changing union to intersection and replacing
motion M by the inverted motion 	M in expression ����

unsweep�S�M� 

�
q� �M

S
q ���

The precise nature of this duality is explained in section
���� De�nition ��� is not particularly revealing� it may
not be obvious why this new operation is useful� why it
may possess computational advantages over sweep� and
what is the precise relationship between the two dual
operations� We study these and other related issues
below and show that�

�� unsweep�S�M� is the largest set of points that re�
mains inside S under M �

�� PMC of a point p against unsweep�S�M� reduces
to classifying the trajectory of p underM �a curve�
against the set S�

�� if Xc denotes the complement of a set X� then
the relationship between the two dual operations
is given by�

�unsweep�Sc� 	M��c 
 sweep�S�M� ���

The �rst property suggests that unsweephas many prac�
tical applications in modeling� the second property in�
dicates that it can be computed e�ectively� and the
third property extends the computational advantages
of unsweep to general sweeps�

��� Example application

Packaging is one of most common problems in mechani�
cal design� Static interference of �xed parts� say within
a single assembly or enclosing envelope� � can be deter�
mined in a straightforward fashion by computing inter�
section of the corresponding solid models� Packaging
of moving parts is more di�cult but can be formulated
using sweep and now unsweep operations� A typical
situation is shown in Figure ��a�� Given a completely
designed part S and the envelope E� S has to �t inside
E while it is moving according to the motion M � A
common way to approach this problem has been to test
if E � sweep�S�M� 
 �� as illustrated in Figure ��b��

�The concepts of motion and inverted motion are explained
in section ����

�In this paper the term �envelope� is synonymous with �con�
taining set� and has no relationship to the theory of envelopes�

In the general case� this test may be di�cult to
implement due to computational limitations of sweeps
mentioned above� Even when fully implemented� the
result of the test is binary� �yes� or �no�� and� when the
answer is �no�� it does not suggest how the moving part
should be modi�ed to �t inside the envelope� For this
task� the best tools available today to human designers
are their experience and intuition� This approach to de�
sign almost always forces ine�cient and costly iterations
in the design process ����

Perhaps a more e�cient way to approach this design
problem is to ask what is the largest part S that would
�t inside E under the speci�ed motion M � and use
this information in deciding how to shape the �nal prod�
uct� As is often the case� the complexity of this design
problem usually exceeds the human intuition and�or ex�
perience� The solution to this problem is readily found
by computing unsweep�E�M� and is shown in Figure
��c��

The above example is only one of many applica�
tions of the new operation� In general terms� unsweep
gives a new method for creating and modifying geomet�
ric shapes and provides a new computational utility for
many motion�intensive applications�

��� Scope and outline

Our main goals are the rigorous de�nition of unsweep�
exploring its computational properties in a general set�
ting� and understanding the relationship between the
operations of sweep and unsweep� For the large part�
we will avoid putting restrictions on the generator set
S or motion M � Additional properties� such as regular�
ity� may be required for speci�c applications� they are
outside of the scope of this paper� We chose to present
our results in the set�theoretic terms� in this sense� they
are independent of a particular choice of representation
schemes for S and M and are applicable to all valid and
unambiguous representations� Representational issues
are important for e�ective implementation of unsweep�
but the range of possibilities is too great for discussion
in this paper� We only mention some of them�

The paper is organized as follows� In section � we ex�
plain that every moving set of points can be viewed and
modeled in two distinct ways� this lead to the notions
of motions and inverted motions� and the correspond�
ing trajectories of the moving points� The introduced
notions are then used to reexamine the usual concept
of sweep and to de�ne the dual operation of unsweep�
The precise nature of this duality is identi�ed in section
�� Section � deals with computational issues� includ�
ing point membership classi�cation� several strategies
for implementing unsweep and some ��dimensional ex�
amples� The concluding section � brie�y discusses the
signi�cance of our �ndings and a number of promising
extensions of this work�
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(a)

Moving 
   Part S

Part S is moving 
inside an envelope 
E according to M.

sweep(S,M)

(b)
sweep(S,M) - E ≠ ∅ 
indicates interference 
between S and E at 
some time. 

(c)

unsweep(E,M)

�
�

S-unsweep(E,M)

unsweep(E,M) is the 
largest part that  fits 
inside E under M.

M
21o

Figure �� The moving part S has to �t within the given envelope E

� Formulation

��� Motions and trajectories

Consider a set of points S with its own coordinate sys�
tem FS moving in a d�dimensional Euclidean space W
with respect to some global �xed coordinate system FW �
Following the notation in ����� we de�ne the motion
M�t�� t � ��� �� as a one�parameter family of transfor�
mations in the higher�dimensional con�guration space
C� For the purposes of this paper� �motions� and �trans�
formations� are interchangeable and are commonly rep�
resented by matrices� as discussed in section ���� We
mostly use rigid body motions for illustration purposes
but� except when noted� all discussion and results apply
to general non�singular a�ne transformations in Ed�

At every instant t 
 a� the original point x of S
moves to a new location that is determined by the trans�
formation M�a�� We will use the superscript notation
to de�ne the transformed �set of� points as

x
M�a� 
 M�a�x� S

M�a� 
 M�a�S ���

The transformation q �M�t� for some instantaneous
value t determines the position and orientation of FS

with respect to FW at that instance and therefore de�
termines the coordinates of every point xq of the moving
set S with respect to FW � by de�nition� a point x � S

is located at xM��� with respect to FW �
In the special� but common� case of a rigid body

motion in the three�dimensional Euclidean space� each
transformation M�a� speci�es rotation and translation
of S at time a with respect to FW � A rigid body mo�
tion in a d�dimensional space is determined by d�d���

�

independent degrees of freedom� as a path in the con�

�guration space C� Mathematical properties of such a
con�guration space are well understood �����

For a range of values of t� M�t� is a subset of the
con�guration space C� For brevity we may denote the
set M�t�� t � ��� �� simply as M � A motion M speci�es
how the moving coordinate system FS moves with re�
spect to the �xed coordinate system FW � Every point
x of set S moves with respect to FW according to M �
as is illustrated in Figure ��a��� As t goes from � to
a� the moving point xM�t� sweeps� with respect to the
�xed frame FW � a set of points Tx called the trajectory
of x and de�ned as

Tx �M�t�x 

�
q�M

x
q ���

Each instantaneous transformation M�a� in equa�
tion ��� has a unique inverse 	M�a� such that x 
 	M�a��M�a�x��
Given a transformation M�t� for a range of values of
t � ��� ��� we will call transformation 	M�t� inverted if it
is the inverse of M�t� for every instance of t�

Consider the point y as being the copy of point x � S

in FW at the initial con�guration� Point y is �xed in
FW and does not move with the object S� but rather
it moves relative to S� To an observer placed at the
origin of FS� the moving point x � S will appear to be
�xed while the �xed coordinate system FW and point y
�xed in FW will appear to be moving according to the
inverted motion 	M�t��

In other words� the moving observer will see the in�
verted trajectory �Figure ��b��

	Tx 
 	M�t�x 

�
q� �M

x
q ���

�We use two�dimensional examples for clarity� but the same
arguments hold in any d�dimensional space�
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Tx
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xM(a)

xM(0) = y

Trajectory of point x generated 
by M(t) as seen from the fixed 
coordinate system FW. Point y 

remains fixed in FW.

(a)

Trajectory of point x generated by M(t), as 
seen from the moving coordinate system 
FS, can be observed by watching the 'trace' 

of point y fixed in FW. 

(b)

FS

FW

FW

yM(a)

Tx

x = yM(0)

Figure �� Motions and trajectories

Note here that we introduced point y only to illus�
trate the di�erence between what the observer sees from
the two coordinate systems FW and FS�

To paraphrase� the trajectory of the moving point
x� observed from FW � is generated by the motion M �
while the trajectory of the same point x� observed from
FS� is generated by the inverted motion 	M � Intuitively�
Tx represents the trace left by moving point x as seen
from FW � while 	Tx is the trace of x as seen from FS�
Therefore� observed from the �xed coordinate system
FW � the points x of S are moving according toM while�
observed from the moving coordinate system FS� the
�world� appears to be moving according to 	M �

For example� when M is a pure translation� the two
trajectories Tx and 	Tx are simply re�ections of one an�
other with respect to the origin� i�e� Tx 
 � 	Tx �����

��� Sweep

Following the above notation and de�nitions from equa�
tions ��� and ���� the �trace� left by a set of points S that
is moving according to M�t�� t � ��� ��� is given by

M�t�S 

�
q�M

S
q �
�

which is immediately recognized as de�nition ��� of the
general sweep given earlier� A rectangular ��dimensional
set S in general motion M with respect to a �xed coor�
dinate system is shown in Figure ��a�� This formulation

assumes that the sweep is computed from the �xed co�
ordinate system FW � �observing� the moving coordinate
system FS�

We could also de�ne sweep� as observed from the
moving coordinate system FS� by

sweep�S� 	M� 

�
q� �M

S
q ���

The set of points de�ned by equation ��� is quite dis�
tinct from that de�ned in equation �
�� Figure ��b�
shows the sweep of set S that moves according to the
inverted motion 	M � We will see in section ��� that there
is also a computationally convenient interpretation of
the usual sweep de�ned by equation �
� in terms of the
inverted trajectories of moving points �i�e� as observed
from the moving system FS�� Notice that� in both def�
initions of sweep� the trajectories of distinct points of
S generated by the same transformation M�t� need not
be congruent� and� in general� the relationship between
these trajectories is not simple� In section ���� we will
consider the case when M is a pure translational mo�
tion� and all points of S do move on the trajectories that
are translation invariant�

��� Unsweep

Consider now a set of points E �xed in the global coor�
dinate system FW and a di�erent set F of points that
are moving according to some transformation M�t�� t �
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(a) sweep(S,M)
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S

FW

(b) sweep(S,M)

Figure �� Sweeping a set according to motions M and 	M

��� ��� Figure ��a� shows a simple two�dimensional ex�
ample where sets F and E are initially the same set of
points� Initially� at t 
 �� the two sets coincide� i�e�
FM��� 
 E� As illustrated in Figure �� some of the
points x � F will travel outside of E� while others will
never leave E� We now de�ne the unsweep�E�M� as
the set of all those points x that remain inside E for all
values of t� Formally�

unsweep�E�M� � fx j x
M�t� � E� �t � ��� ��g � �

By this de�nition� unsweep�E�M� is well�de�ned and
is the largest subset of F that stays inside E while F

is moving according to M�t�� The characterization of
unsweep in de�nition � � may not provide an insight in
the nature of unsweep or possible methods for comput�
ing the results of this operation� An equivalent� but
more convenient� de�nition is obtained by observing
that the set xM�t�� t � ��� ��� is simply the trajectory
Tx of point x� Therefore�

unsweep�E�M� 
 fx j Tx � Eg ����

The condition in equation ���� is illustrated in Fig�
ure ��a�� As long as the trajectory Tx of point x stays
inside of E� x � unsweep�E�M�� while if Tx intersects
the complement set Ec then point x 	� unsweep�E�M��
In section ��� we will use this observation to develop a
rigorous point membership classi�cation �PMC� proce�
dure for unsweep�E�M��

We can also characterize unsweep by reversing the
roles of the stationary set E and moving points x � F

as illustrated in Figure ��b�� It should be clear from the
discussion in section ��� that keeping all points x � F

�xed� the same relativemotion between F and E will be
described by a set E moving according to the inverted
motion 	M�t�� At any instant t 
 a� the moving set will

occupy points E
�M�a�� From these points� only the set

F �E
�M�a� may remain inside the set F � Since this inter�

section condition must hold for all values of t� we obtain
the third equivalent characterization of unsweep that is
identical to the dual of sweep de�ned by expression ���
in section ����

Finally� note that the set of points

unsweep�E� 	M� 

�
q�M

E
q 
 fx j 	Tx � Eg ����

is not the same set as unsweep�E�M�� Figure ��a�
shows the unsweep�E�M�� i�e� the points of set F are
moving in pure translation according to M or set E

moves according to 	M � while Figure ��b� shows
unsweep�E� 	M � when the points of set F are moving
in pure translation according to 	M or set E moves ac�
cording to M �

� Duality

��� Case of Translational Motion

The dual relationship between sweep and unsweep is
easier to see in the restricted case when M�t� is a pure
translation� In this case� each point x of the moving set
S sweeps the trajectory

Tx 
 x!M�t�� t � ��� ��

where both x and M�t� have vector values represented
with respect to the �xed coordinate system FW � If x�y �
S are two distinct points with trajectories Tx and Ty�
respectively� then it should be clear that

Tx 
 Ty 
 �x� y�

where 
 is Minkowski �vector set� addition with the
usual properties ����� In other words� every point of S
moves on the same trajectory T that is translation in�
variant and is in fact equivalent to the set of translations
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Moving set F is observed 
from the stationary set E

Stationary set E is observed 
from the moving set F

E

F at time t = a

M

Tx

Ty

E at time t = a

F

M

������
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������
������
������x

xM(a)

y

yM(a)

Figure �� De�nition of the unsweep operation� two sets E and F in relative motion

M � This implies that set S moves without changing its
orientation and that

sweep�S�M� 

�
q�T

S
q 
 S 
 T ����

is also translation invariant� Similarly� using de�nition
��� of unsweep in terms of the moving set S on inverted
trajectory� we have

unsweep�S�M� 

�
p� �T

S
p 
 S � 	T ����

where � is the usual Minkowski di�erence operation
����� The rightmost expression is sometimes also called
erosion and is the set of points fy � S j Ty � Sg� which
is consistent with de�nition � � of unsweep� Notice that
	T 
 �T is simply a re�ection of T with respect to the
origin of the frame FW and is again translation invari�
ant�

Minkowski operations have many useful properties
and are used extensively in geometric modeling� mo�
tion planning� and image processing ��� ��� ��� ��� ����
In particular� de�nitions of Minkowski operations imply
that 
 and � are dual to each other via

S 
 T 
 �Sc � T �c ����

with Xc denoting the usual complement of set X�

��� General case

Many properties of Minkowski operations depend on the
translation invariance and do not generalize to sweeps
and unsweeps under motions other than translations�
But a number of Minkowski properties follow strictly
from the set�theoretic considerations and de�nitions�
One would expect that all such properties should ex�
tend to more general motions� Indeed� the duality of
operations 
 and � is one such property that general�
izes to the duality of the operations sweep and unsweep

as de�ned in this paper�
Let us rewrite equation ���� in set theoretic terms

as S
q�T

Sq 
 �
T
q�T

�Sc�q �
c
�

or
�
S

q�T
Sq�c 


T
q�T

�Sq�c
����

since �Sc�q 
 �Sq�c� But the last equality� and hence
the duality of 
 and �� is simply a restatement of the
usual DeMorgan�s laws for operations of union and in�
tersection generalized for arbitrary number or families
of sets � �� The straightforward application of the same
law in the case of general motion M yields

�
S

q�M
Sq�c 


T
q�M

�Sq�c�

or

�sweep�S�M��c 
 unsweep�Sc� 	M�

����

which is equivalent to the relationship ���� The es�






Set E is moving in pure translation with 
respect to the fixed coordinate system

(a)

unsweep(E,M)

E

E

unsweep(E,M)

(b)
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Fixed coordinate system Fixed coordinate system

Points are moving in pure translation 
according to M with respect to the fixed 
coordinate system. Set E is stationary.

M

M

M

M

Figure �� Di�erence between the sets unsweep�E�M� and unsweep�E� 	M�

tablished duality characterizes sweep�S�M� in terms of
points moving according to the inverted motion 	M as
observed from Sc �or equivalently from S�� In other
words� sweeping �unsweeping� set S with motion M is
equivalent to unsweeping �sweeping� the complement of
S with the inverted motion 	M and complementing the
result�

� Computational Issues

��� PMC for unsweep and sweep

Point Membership Classi�cation �PMC� is a procedure
for deciding whether a given point x is inside� outside�
or on the boundary of a set S ����� It has its roots in
solid modeling� and set S is usually a d�dimensional solid
�d 
 �� �� ��� The PMC procedure is a sign of �informa�
tional completeness� of a representation scheme ��
�� in�
dicating that any geometric property can be computed
at least in principle� As a matter of practical impor�
tance� PMC is used in almost all geometric modeling
algorithms� including boundary evaluation� discretiza�
tion� and rendering� PMC is a special case of the Set
Membership Classi�cation function that� given a candi�
date set X and S computes �regularized� portions of X
on S� X in S� and X outside of S �����

We make no assumptions on whether S is regular or
not� The operations of sweep and unsweep� as de�ned
in this paper� may result in sets that are not regular�
i�e� dimensionally inhomogeneous sets with �dangling�

faces� edges or isolated points� Closed regular sets are
not closed under Minkowski di�erence �see example in
������ and it is easy to construct similar examples show�
ing that unsweep of a regular set S may not be regular�
Regularity� other topological� and set�theoretic proper�
ties are outside of the scope of this paper� Instead we
show how to use the de�nitions of unsweep to obtain a
PMC procedure for the general unsweep �and then gen�
eral sweep�� Accordingly� we generalize the standard
PMC notions in a manner consistent with de�nitions in
����� We will say that point x is �in� set S when there
is an open neighborhood of x contained in S� point x

is �out� of S when some open neighborhood of x is con�
tained in the complement set Sc� and x is �on� S if every
neighborhood of x intersects both S and Sc� The last
condition implies that x � �S is a boundary point� but
x may or may not belong to S� because set S could be
open� closed� or neither�

The basis for a sound PMC procedure is supplied by
equations � ������� and an appropriate interpretation
of the moving point trajectory Tx� The PMC de�ni�
tions imply that we need to consider not only a moving
point x� but also its open neighborhood ball B�xM�t��
of points that is transformed with x� To perform PMC
on unsweep�E�M� we need to consider three situations�

�� If trajectory Tx remains in the interior iS of S�
then point xM�t� remains inside S for all values of
t during the motion M�t� that generated Tx� Fur�
thermore� there is an open neighborhood B�xM�t��



�

of points that also remain in the interior iS of S
for all t �see Figure � �a��� It follows that in this
case x is �in� unsweep�S�M��

�� Whenever Tx intersects the boundary �S� the neigh�
borhood B�xM�t�� gets �trimmed� by �S� as illus�
trated in Figure � �b�� This implies that no open
neighborhood of x is contained in unsweep�S�M��
and therefore x cannot be �in�� thus� x must be
either �out� or �on� unsweep�S�M��

�� Additional neighborhood analysis to distinguish
between �on� and �out� cases depends on proper�
ties of set S �open� closed� dimension� and tra�
jectory Tx �whether it intersects �S transversally�
whether it remains inside S� etc�� In all cases�
the analysis amounts to determining whether the
neighborhood B�xM�t�� of the moving point gets
�trimmed� down to the empty set �� If so� the point
x must be �out� of unsweep�S�M�� Otherwise� x
remains �on��

For example� let us consider a common case when S

is any closed set� As long as the trajectory Tx does not
�go� outside of S� point x cannot classify �out�� There�
fore� the PMC procedure reduces to the straightforward
classi�cation of a curve T �x� against a representation for
set S�

PMC�x�unsweep�S�M�� 


�
in� Tx � iS

out� Tx � Sc 	
 �
on� otherwise

��
�
and it remains correct irrespective of homogeneity or di�
mension of S � assuming that boundary� interior� and
complement are all de�ned relative to the same univer�
sal set�

By duality� we can use the same technique to con�
struct a PMC procedure for any sweep�S�M�� Since

��sweep�S�M�� 
 ��unsweep�Sc� 	M �� ����

it is su�cient to classify point x against unsweep�Sc� 	M�
and simply exchange �in� and �out� results� Notice
however that whenever S and sweep�S�M� are closed
sets� set Sc and unsweep�Sc� 	M� are open� and the PMC
conditions are slightly di�erent from ��
� above� Since
the boundary �Y of an open set Y is a subset of Y c�
the condition Tx

T
Y c 	
 � may imply that point x is

either �on� or �out� of Y � In this situation� additional
neighborhood analysis may be required to distinguish
between the two cases� This problem does not arise in
solid modeling applications when all sets are regular�
ized�

Finally note that� when S is a planar cross�section
moving in E�� this approach for PMC on sweep�S�M�
yields the procedure proposed in �
��

��� Representing Motions and Trajec�

tories

General a�ne transformations in Ed can be represented
as linear transformations in projective space using ho�
mogeneous coordinates and �d ! �� � �d ! �� matrices
���� Thus� if motion M�t� is given by a matrix A�t��
then the inverted motion 	M is given by the inverse of
this matrix A���t�� In the case of a rigid body motion
in E�� we have

A�t� 


�
�� "�t� T �t�

� � � �

�
�	 �

and

A���t� 


�
�� "T �t� �"T �t�T �t�

� � � �

�
�	

�� �

where "�t� and T �t� represent the rotational and trans�
lational components of the motion M�t�� In the case
of pure rotation� T �t� 
 �� and A���t� is obtained from
A�t� by replacing the orthonormal sub�matrix "�t� with
its transpose "T �t�� When M�t� is a pure translation�
"�t� is the identity� and A���t� is obtained from A�t�
by replacing T �t� with its re�ection �T �t��

If a point x is represented by a vector �v� and a motion
M�t� is represented by a matrix A�t�� the trajectory
Tx can be written in parametric form simply as A�t� 

�v� The parametric form of the curve Tx is suitable for
computing the intersection of Tx with the boundary of
a given set �typically solid� S� as needed for the PMC
procedure developed above� In the general case� this
representation of Tx would use trigonometric functions�
and it may be useful to consider under what conditions
Tx can be re�parameterized in a computationally more
convenient form�

��� Implementation strategies

The two methods of de�ning unsweep�S�M� naturally
suggest two distinct approaches to computing the re�
sulting set of points�

� De�nition ��� gives a method for approximating

unsweep�S�M� by a �nite intersection of sets S
�M �t�

positioned at discrete time intervals according to
the inverted motion 	M � Intuitively� at every time

step t 
 a� the �unwanted� portion of S
�M�a� that

protrudes outside of S
�M��� is eliminated through

the intersection operation�

This method is easy to implement in any system
that supports the desired transformations �e�g� rigid
body motions� and Boolean set operations�
When S is a solid� good performance and quality
of the approximations can be obtained by using



 

(a)

If the trajectory of a point remains 
inside the set S, its neighborhood 
remains full. If the trajectory 
crosses the boundary, the 
neighborhood becomes empty.

�
�

��
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x
S

Neighborhood of point x gets 
trimmed every time its trajectory 
hits the boundary of S.

(b)

��
��
��
��

�
���

S

Figure �� Neighborhoods of points moving on trajectories generated by motion M

raycasting software and hardware techniques� as
described in ���� ����

� The second formulation de�ning unsweep�S�M� in
terms of trajectories of moving points �equation
����� leads to a well�de�ned PMC procedure as
described above� Ability to perform PMC can be
used for computing unsweep�S�M� either exactly
�within the machine precision� or approximately�
For example� the steps in computing the exact
boundary representation of unsweep are similar to
the usual procedure for boundary evaluation �����

�� generating surfaces bounding the unsweep�

�� intersecting the generated surfaces to produce
a set of potential candidate faces�

�� testing which of the candidate faces lie on the
boundary of unsweep�

The shared boundary of sweep and its dual
unsweep �equation ����� implies that all the meth�
ods used in generating bounding surfaces for com�
puting sweep ����� �� ���� are also applicable to
computing unsweep� The degree of di�culty of
the second step clearly depends on the types of
surfaces generated in the �rst step� The third step
amounts to selecting a representative point in each
candidate face and testing it against unsweep�S�M�
using the PMC procedure� as described above in
section ����

The PMC procedure also opens the doors to the
standard approximation methods based on various
cell decompositions� such as piecewise linear tes�
selations� octrees� and marching�cube algorithms
����

By duality� all of the above methods are also applica�
ble to sweep� Speci�c representational choices and com�
putational strategies will depend on properties of S and
M � For example� it makes little sense to approximate
sweep�S�M� by discrete union or intersection when S

is a planar cross�section moving in E�� and it may not
be feasible to compute the exact boundary representa�
tion when S is a solid bounded by parametric surfaces
of high degree�

��� Examples

Several two�dimensional examples of unsweep�E�M�
already appeared in the previous sections of this pa�
per� Figure ��c� shows unsweep of a simple rectan�
gular envelope by a clockwise rotation� Figures ��a�
and �b� show the di�erence between unsweep�E�M� and
unsweep�E� 	M � with the same L�shaped envelope E� M
is a translation along a circular arc� and 	M is the trans�
lational motion along the re�ected arc with respect to
the origin� These restricted situations� which involve
only polygonal envelopes and simple translations or ro�
tations illustrate that the results of unsweep are not
always intuitive and would be di�cult to obtain manu�



��

ally�
Several simple three�dimensional examples of unsweep

are shown in Figure 
� In Figure 
�a� the envelope E is
a cylinder and the motion M is a rotation around the
axis aligned with the center of the shown hole �paral�
lel to the z�axis and perpendicular to the axis of the
cylinder�� The computed set unsweep�E�M� is shown
inside the cylinder and represents the largest subset of
E which remains inside E while rotating around the
rotation axis in the counterclockwise direction� Figure

�b� shows another example where the envelope E is the
union of a cylinder and a sphere and M is inverted from
a �helical� motion 	M that is given by�

��t� 
 t� x�t� 
 R cos t� y�t� 
 R sin t� z 
 ��t�

where � speci�es the rotation around z�axis� In Figure

�c�� E is a cylinder and M is a sequence of two rota�
tions� �rst � radian rotation around the x�axis �� � ���
followed by another � radian rotation around the axis
aligned with �� � ��� The two axes are positioned so
that they intersect the axis of the cylinder at the same
point �not shown�� It is easy to see that� as the en�
velope and motions become more complex� predicting
the shape of unsweep�E�M� becomes very di�cult �if
not impossible� without proper computational support�
This may explain why unsweep has not been formulated
or used until now� Note that� based on equation ��� the
unsweep operation preserves convexity of the envelope�
thus� if E is convex� then unsweep�E�M� will also be
convex as in Figures 
�a� and 
�c��

Figure 
�b� shows that� in general� unsweep�S�M�
does not have to be convex� but� intuitively� it will never
be �any less convex� than the generator set S�

The �nal example in Figure 
�d� shows a transla�
tional sweep of a simple solid S� The solid is constructed
as the union of a cube and a cylinder� and the motion
is a translation in the direction of vector �� � ��� The
shown sweep was actually computed as unsweep of the
complemented set� using the duality equation ����� For
practical purposes� the role of the universal set is played
by a bounding box that is large enough to contain the
sweep� Then the �relative� complement of S is simply
the set di�erence of the bounding box and S�

� Conclusions

��� Sweep or unsweep	

It may be tempting to think of unsweep as the inverse
of sweep� This is certainly not true� in the sense that
unsweep�sweep�S�M�� 	M � is equal to S only in very spe�
cial situations � just like �A 
 B� � B is usually not
equal to A for Minkowski operations ����� While the
notion of �inverse sweep� seems to arise naturally in
some applications�� �� it does not appear to be well�
de�ned in general� As a dual of sweep� the operation
of unsweep does appear to solve some �inverse� practical
problems� such as design problems described in section

���� It is quite unusual that the �inverse� problem ap�
pears to be signi�cantly easier than the usual �direct�
problem of sweeping a moving part� Why should it be
easier to perform PMC on unsweep than on sweep� even
though sweeping usually appears to be more natural
than unsweeping# Compare the informal descriptions
of the two operations�

sweep� the set of points occupied by object S at some
time during its motion� and

unsweep� the set of points that remain inside set S at
all times during their motion�

The above characterization of sweepmay be more natu�
ral� and it suggests methods for generating the surfaces
swept by boundaries of S as it moves� but it intrinsi�
cally suggests a search� By contrast� the description
of unsweep naturally lends itself to an intersection or
containment test� but it does not refer to a given mov�
ing object or its boundaries� The duality between the
two operations says that the two characterizations are
equivalent in the following sense� a stationary point x
belongs to the sweep of moving S if and only if the tra�
jectory of x as seen from S penetrates S at its initial
position�

Apparently� for the same relative motion� the choice
of which object is moving and which is stationary can
make a world of di�erence from the computational point
of view� We expect that the combined properties of
sweep and unsweep should lead to other new algorithms
and applications�

��� Signi
cance and Extensions

For the most part� we avoided making any assumptions
about set S and motion M � This implies that our results
are general and are widely applicable� The research
described in this paper advances the �eld of geomet�
ric modeling and applications in at least three distinct
ways�

� As a concept� unsweep is a new tool for creating
and modifying geometric shapes� In addition to
packaging problems already mentioned in section
���� we anticipate many other applications in man�
ufacturing planning� simulation� mechanical de�
sign� and analysis of moving parts and assemblies�

� We have shown that unsweep comes with attrac�
tive computational properties� including a rela�
tively straightforward PMC procedure and natu�
ral computing strategies� both exact and approxi�
mate�

� Finally� unsweep�lls in a missing link in the theory
and practice of geometric modeling� As a dual
of sweep� it complements the theory of sweeps�
provides the previously unavailable computational
support� and strengthens the formal properties of
sweeps as a representation scheme�
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Figure 
� Examples of unsweep applications�
�a� E is a cylinder and M is a rotation around the axis aligned with the center of the shown hole�
�b� E is the union of a cylinder and a sphere and M is inverted from a �helical� motion 	M �
�c� E is a cylinder and M is a sequence of two rotations�
�d� A translational sweep of a simple solid S� the solid is constructed as the union of a cube and a cylinder�
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The generality of our approach also means that a
number of speci�c issues have not been discussed and
are yet to be addressed� These include set�theoretic and
topological properties of unsweep� detailed PMC proce�
dures for speci�c sets �e�g� curves� planar� solid� open�
and motions �translations� rotations� general rigid� with
deformation� etc��� regularization� and others� Extend�
ing other properties of Minkowski operations to sweep

and unsweep may also prove interesting and useful�
In the spirit of ��
�� we attempted to keep the discus�

sion �representation�free�� Representational choices for
sets� motions� and trajectories are many and are clearly
important� the speci�c choices may depend on the rel�
ative importance of simplicity� e�ciency and compati�
bility with existing systems as well as other pragmatic
considerations� This work is intended to provide the
starting point for such explorations�
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