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ABSTRACT
Recent hardware advances in the field of 3D imaging are democratizing 3D sensingwith tremendous
scientific and societal implications. Point cloud processing has traditionally required meshing the
point clouds output by 3D cameras followedby surface reconstruction, andgeometric feature recog-
nition. However, meshing a point cloud is fundamentally an ill-posed problem, and the definition of
a good solution is not general. This, in turn, demands new paradigms for processing point cloud
information.

In this paper, we focus on the task of classifying 3D point clouds captured with commercial 3D
cameras, and we integrate supervised machine learning algorithms with three different yet under-
explored shape descriptors, namely Light-Field Descriptors, Angular Radial Transform (ART), and
Zernike Descriptors (ZD). We evaluate the classification performance of different machine learning
algorithms combined with these different shape descriptors on point cloud models obtained from
theGoogle 3DWarehouse, andwedemonstrate good classificationperformance for 3Dpoint clouds.
Furthermore, we show that Zernike Descriptors are practically insensitive to noise levels typically
found in point cloud models captured via 3D sensing.
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1. Introduction

The recent developments in 3D sensing devices that
deliver high-quality raw 3D data in real time offer grow-
ing opportunities to explore the usage of this data for
3D perception and reasoning tasks. For example, one
of the key challenges in developing practical human-
robot interaction mechanisms is the automatic interpre-
tation/classification of data collected by the emerging 3D
cameras widely used in engineering and science in gen-
eral, and robotics in particular. This, in turn, demands
new paradigms for processing point cloud information,
because current point cloud processing algorithms have
limited capabilities to automatically extract semantic
information from the observed scenes.

Point cloud processing has traditionally required gen-
erating a mesh of the point clouds output by the 3D
cameras followed by surface reconstruction, and geomet-
ric feature recognition. However, meshing a point cloud
is fundamentally an ill-posed problem, and the definition
of a “good” solution is not general. Furthermore, obtain-
ing good quality meshes from noisy or incomplete point
clouds, which could then be used for downstream pro-
cessing, require frequent user intervention in all practical
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cases. In turn, this severely limits the range of applications
of the 3D sensing and perception technology.

In this paper, we focus on the problem of clas-
sifying 3D point clouds captured by commercial 3D
cameras, and we are integrating different supervised
machine learning classifiers with several capable yet
underexplored shape descriptors based on visual simi-
larity (light-field), angular radial transform (ART), and
Zernike moments. Specifically, we investigate the use of
3D Zernike descriptors as well as a combination of 2D
ART descriptors with light field techniques to construct
and compare the performance of practical descriptors
for 3D point cloud classification. Importantly, the result-
ing shape descriptors are invariant under various trans-
formations, as discussed in the section 3 of this paper.
We train our classifiers with a database of point clouds
corresponding to several common objects obtained by
sampling polygonal models obtained from Google’s 3D
Warehouse and by post-processing them to attain con-
trolled but varying levels of density and noise. We show
that these descriptors provide a promising alternative
to the current shape descriptors employed for classify-
ing point clouds in the presence of noise. To the best of
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our knowledge, the work presented in this paper is the
first application of 3D Zernike moments to point cloud
classification.

The remainder of the paper is structured as follows:
section 2 provides an overview of the relevant existing
work on existing shape descriptors followed by a detailed
explanation on LFD, ART and ZD shape descriptors in
Section 3. We report in section 4 the implementation
details and evaluate the performance of the implemented
shape descriptors on the point cloud database. In section
5 we present our concluding remarks and suggestions for
future work.

2. Related work

The classification of shapes relies on the existence of a
similarity or dissimilarity measure between shapes. A
good representation of the shape features in terms of
a shape descriptor must be discriminating, efficient to
compute and compare, invariant under isometries, insen-
sitive to geometric as well as topologic noise, and robust
to degeneracies. In this workwe are using the term “shape
features” to refer to any collection of attributes of a shape
that are distinctive in some sense (such as differential,
integral and spectral quantities), which is a rather general
definition that captures the largest set of such quanti-
ties. Furthermore, we use the term “geometric feature”
to refer to the concept of a feature widely accepted in
the computer-aided design community, which captures
generic shapes and has engineering significance as dis-
cussed in [11].

Many 3D shape descriptors have been recently pro-
posed and applied primarily to tessellated models, as
detailed in the recent reviews that appear in Tangelder
et al. [12] and Kazmi et al. [5]. At the highest level,
the descriptors can be grouped based on their repre-
sentation into: global features (e.g., volume, statistical
moments), global feature distributions (e.g., histograms),
spatialmaps (e.g., spherical harmonics [3]), and local fea-
tures (e.g., shape spectra) as detailed in [12]. However,
almost all existing shape descriptors have been defined
for tessellated models, and very few exist that can be
applied to native point clouds. For example, Williams
et al. [13] developed a practical and convergent estimate
of the Laplace-Beltrami operator for point clouds, which
is symmetric under real-world conditions, and used it
to construct compact shape signatures of point cloud
models. These signatures were them used in conjunc-
tion with topological clustering techniques via Vietoris-
Rips clustering to segment point cloud models of engi-
neering artifacts into geometric features of engineering
interest.

Light Field-based techniques have been used in con-
junction with 2D signatures to tackle the task of retriev-
ing 3Dmodels from databases (see for example [9]). Fur-
thermore, two-dimensional image moments have been
traditionally used for image recognition, but they suf-
fer from noise sensitivity, and information suppression.
These difficulties have been addressed in 2D by introduc-
ing the Zernike moments defined with Zernike polyno-
mials. For example, Chen et al. [4] proposed the Light
Field Descriptors (LFD), which compute 2D Zernike
moments and Fourier coefficients based on the silhou-
ettes images taken from cameras on the vertices of
a dodecahedron. These Zernike moments have been
extended to 3D by Canterakis [2], and have been applied
to tessellatedmodel retrieval byNovotni et al. [10], where
it is argued that the 3D Zernike moment-based descrip-
tors lead to better retrieval performance and robustness
against topological and geometrical artifacts of tessellated
models than state of the art descriptors.

Other shape descriptors have been proposed in the lit-
erature and applied primarily on polygonal models, but
for the sake of brevitywe refer the reader to recent surveys
such as [5,8,13,15,16].

3. Feature descriptors

In what follows, we present background information
about the shape descriptors used in this work, as well as a
brief explanation of their key characteristics relevant for
classifying point cloud models of rigid objects.

3.1. Angular Radial TransformDescriptors (2D ART)

ART descriptors were proposed by Kim et al. [7]. As
a region-based shape descriptor, the original ART is
defined as a set of normalized magnitudes of the ART
moments or coefficients computed on a 2D image, and is
capable of describing both connected and disconnected
regions with rotational invariance. These shape descrip-
tors possess several desirable properties, such as compact
size, invariance to similarity transformations, and robust-
ness against noise and scaling, and are able to capture
features of 2D color images [11]. The ART coefficients,
Fnm of order n and m, are defined by:

Fnm =
∫ 2π

0

∫ 1

0
Vnm(ρ, θ)f (ρ, θ)ρdρdθ , (1)

where f (ρ, θ) is the image function expressed in a polar
coordinate system, andVnm(ρ, θ) are theARTbasis func-
tions that can be separated in the radial and angular
directions:

Vnm(ρ, θ) = Am(θ)Rn(ρ) (2)
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The radial basis function Rn(ρ) and angular basis func-
tion Am(θ) are defined as:

Rn(ρ) =
{
1, n = 0
2 cos(πnρ), n �= 0

and Am(θ) = 1
2π

ejmθ

(3)

Rotational invariance can be obtained by using the mag-
nitude of the ART coefficients [7]. In our experiments, we
use n=3 and m=12 to maintain a manageable compu-
tational complexity, and ART coefficients are normalized
by the magnitude of the ART coefficient F00. In order
to achieve translation invariance, the center of the polar
coordinate system is defined as the mass center of the
object. The ART has been generalized to the indexing of
3D tessellated models (see for example [11]).

3.2. Zernike descriptors (ZD)

Zernike moments are mappings of the function that
defines the shape (or image) onto a set of orthogonal
polynomials over a unit ball. Similar to the ART descrip-
tor, the Zernike descriptors can be defined from the
magnitudes of a set of orthogonal complex moments of
objects, and are rotationally invariant.

3.2.1. 2D ZD
2D Zernike polynomials (ZP) in polar coordinates are
defined as:

Vnm(ρ, θ) = Rnm(ρ)ejmθ , (4)

where Rnm(ρ) is the radial polynomial given by [6]:

Rnm(ρ) =
(n−|m|)/2∑

s=0
(−1)s

× (n − s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s (5)

In the above two equations, order n is a positive integer
or 0, and repetitionm is an integer such that |m| ≤ n and
n − m is even. 2D Zernike moments can be constructed
in the following discrete form:

Anm = n + 1
π

∑
x

∑
y

f (x, y)Vnm
∗(ρ, θ),

for x2 + y2 ≤ 1 (6)

Similar to ART descriptors, |Anm| are rotation invariant
and can be used as shape descriptors.

3.2.2. 3D ZD
Following the notation used in [10], 3D Zernike polyno-
mials Zm

nl in polar coordinates are given by:

Zm
nl(r, θ ,φ)=Rnl(r) · Ym

l (θ ,φ) (7)

and restricting l such that |l| ≤ n and n − l be an even
number. In equation (7) Rnl(r) are the radial polyno-
mials and Ym

l are spherical harmonics. In the Cartesian
coordinate system, the 3D Zernike polynomials can be
represented as:

Zm
nl(x, y, z) =

k∑
v=0

qv
klr

2veml (x, y, z), (8)

where qv
kl are coefficients, 2k = n − l and the harmonic

polynomials eml are defined as eml = rlYm
l (ϑ ,ϕ) in spher-

ical coordinates. These harmonic polynomials can also be
expressed in Cartesian coordinates as:

eml (x, y, z) =
√

(2l + 1)(l + m)!(l − m)!
l!

rl
(
ix − y
2

)m

× zl−m ·

⌊
l−m
2

⌋
∑
μ=0

(
l
μ

) (
l − μ

m + μ

)

×
(

−x2 + y2

4z2

)μ

(9)

The 3D Zernike moments �m
nl of an object function f are

defined as [10]:

�m
nl :=

3
4π

∫
|x|≤1

f (x)Zm
nl(x)dx (10)

A rotationally invariant version of these moments can
be obtained by normalizing the moment vector �nl =
(�l

nl,�
l−1
nl , . . . ,�−l

nl ). Later in the paper we explore the
impact of the orders of the 3D Zernike descriptors on the
performance of the classification as well as its robustness
against different level of noise.

3.3. Light field descriptors (LFD)

LFD uses the observation that two similar objects look
similar from similar viewing angles. We set 20 view-
points (or cameras) on 20 vertices of a regular dodecahe-
dron. Since the cameras on the opposite vertices would
produce the same silhouettes, 10 object views are needed
for each model. To achieve the rotational invariance
property, each 3D model is “observed” by 10 cameras
in 10 different orientations. Therefore, a total of 100 sil-
houettes are determined for each model, and each 2D
silhouette is encoded by a feature vector extracted by
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Figure 1. A set of LFDs for a 3D model.

ART. Fig. 1, reproduced from [4], illustrates the set of
LFDs used for one model to obtain rotational invariance.

Consequently, a total of 100 silhouettes are rendered
for each model, and each image is encoded by a feature
vector with 35 2D Zernike moments or ART moments.
Therefore, the length of LFD+2D ART/2D ZD is 3500.
Weuse PCA to obtain amore compact descriptor for each
model.

4. Experimentations and results

4.1. Experimental setup

We create our own 3D model database as the test bed for
the experimentation by using models downloaded from
Google’s 3D Warehouse. However, we note that there
are other object databases that have been used primar-
ily for processing meshed models, such as the Prince-
ton, COSEG and NTU databases. Our database currently
contains 185 models belonging to 6 common object cat-
egories, including 30 cars, 29 planes, 31 mugs, 31 tables,
34 chairs and 30 desk lamps. These categories of objects
ensure a geometrically diverse database. A sample of the
3D meshed models that we used to build our dataset is
shown in Fig. 2: each row represents a model class, and
5 models shown in each row are selected arbitrarily from
the corresponding category.

The pipeline of our experimentations is shown in
Fig. 3. It consists of the following three modules:

1. Model Preprocessing:
first step is to convert the meshed models into point
clouds models via Poisson disk sampling, and to esti-
mate the surface normal at each point from the k-
nearest neighbors of each query point. Then, the
model is scaled into a unit cube and then translated to
the origin of the coordinate system. Next object views
are created for point cloud models to compute LFD,
and point cloud models are voxelized for 3D ZD.

Figure 2. A sample of the 3D meshed models downloaded from
Google’s 3D Warehouse.

2. Feature Extraction:
feature vector for each model is computed by using
LFD (with 2D ZD and ART) and 3D ZD. This allows
the construction of a feature matrix having a size of
185×L, where L is the length of a single feature vec-
tor. To reduce the high computational complexity of
training machine learning classifiers, we use PCA to
reduce the dimensionality of the feature vectors to
20-30 feature components.

3. Training and Testing:
partition the dataset into training set and test set. The
training set contains 125models, the remaining 60 are
used as a test set. To prevent the overfitting issue, we
repeat the whole process 50 times (with and without
the k-fold cross validation) with different partitions of
the data set. The final step is to compare the classifi-
cation effectiveness and performance among different
classifiers.
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Figure 3. Pipeline of 3D model classification system.

Figure 4. Illustration of the classification procedure for a chair model.

A specific example of the above workflow for a chair
model is illustrated in the Fig. 4.

4.2. Experimental results

We implemented the LFD+ART/2D ZD and 3D ZDs in
our experiments. To evaluate the classification perfor-
mance, we first compare the overall classification accu-
racies among different implemented classifiers with and
without cross validation, and then compare the perfor-
mance for eachmodel category. The classification process
was repeated 50 times, each time with randomly parti-
tioning the data into training and test sets. The average
classification reported below is the average classification

for all 50 runs. In addition, we also investigate how the
3D ZDs respond to point cloud noise that is similar with
that seen by commercial 3D sensing devices.

4.2.1. LFD implementation and results
Fig. 5 shows a number of object views for several models
selected form our dataset.

After the object views are created, we use 2D ZD and
2DARTdescriptors to extract features of the rendered sil-
houettes of the point clouds. For 2D ZD, we compute the
first 35 moments (up to 7th order), while obtaining the
same number of ART moments by using 3 radial func-
tions and 12 angular functions (n<3, m<12). The com-
parisons of average classification accuracy for LFD+2D
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Figure 5. Object views of some selected models.

Table 1. Classifcation accuracy by using LFD+2D ZD and
LFD+2D ART with three different machine learning algorithms:
Multi-Layer Perceptron (MLP), k-Nearest Neighbor (kNN) and
Random Forests.

Avg. Classification Accuracy

Light-Field Descriptors

With 10-fold cv
(repeated 50

times)

Without cv
(repeated 50

times)

MLP (Input layer size:
40; Hidden layer
size: 25; Training
Function: Sigmoid)

LFD+2D ZD 81.62%±1.0% 79.33%±1.0%

LFD+ART 80.54%±1.0% 80.00%±1.0%
KNN (Feature size: 30;
k= 1)

LFD+2D ZD 98.19%±1.0% 97.70%±1.0%

LFD+ART 98.22%±1.0% 98.57%±1.0%
Random Forests
(#Trees: 120)

LFD+2D ZD 98.16%±1.0% 97.00%±1.0%

LFD+ART 98.70%±1.0% 98.08%±1.0%

ZD and LFD+2D ART among different classifiers are
presented in Tab. 1.

We observe that LFD+ART slightly outperform
LFD+2D ZD overall, and that the kNN and Random
Forests perform better than the MLP among the imple-
mented classifiers.

Our experiments with the object database described
above show that the classification accuracy is relatively
uniform across the model categories as shown in Table 2,
where we provide the classsification accuracy of the kNN
classifier.

4.2.2. 3D ZD Implementation and Results
In order to construct the 3D Zernike descriptors directly
on the point cloud models, we first convert each meshed
3Dmodels to a point cloud using Poisson-disk sampling,
then voxelize the point cloud and select those voxels that
contain a single point of the point cloud.We note that the
result of this voxelization is sensitive to noise in the point
cloud, but it is computationally efficient.

To investigate the impact of the order of the Zernike
polynomial on the classification performance, we select
n to be 15, 20, 25 and 30. Each polynomial order corre-
sponds to different number of feature components. The
results are summarized in the Tab. 3.

Table 3 shows that the increase of the polynomial order
does not necessarily improve the classification accuracy.
Clearly, the higher the polynomial order, the longer it
takes to compute the features of a 3D point cloud model.
We observeed that a good compromise between the clas-
sification performance and the associated computational
cost for models in our database is achieved for polyno-
mial orders between 20 and 25.

The classification quality for each class can be plot-
ted in theReceiverOperatingCharacteristic (ROC) curve
(true positives vs false positives rate). Themore the curve
is leaning toward the upper left corner (larger area under
curve), the better the result is.

Fig. 6 shows the ROC curve of the Random For-
est Classifier. We can see that the area under the
ROC curve for each object category is in the range of
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Table 2. Classification results for each category by using the nearest neighbor classifier.

LFD+ZD LFD+ART

Light Field
Descriptors

Avg. no. of Correct
Classified Models

Avg. no. of models
in the test set

Avg.
Accuracy

Avg. no. of Correct
Classified Models

Avg. no. of models
in the test set

Avg.
Accuracy

Chair 10.84 11.32 95.96% 10.78 11.14 96.76%
Table 9.88 10.30 95.92% 10.22 10.48 97.50%
Mug 10.34 10.34 100.00% 10.38 10.38 100.00%
Plane 9.36 9.36 100.00% 9.30 9.30 100.00%
Car 9.36 9.36 100.00% 9.30 9.30 100.00%
Lamp 8.84 9.32 94.84% 9.16 9.40 97.44%
Total 58.62 60.00 97.70% 59.14 60.00 98.57%

Table 3. Performance comparisons among using 4 different orders of ZP.

3D ZD

n= 15
(72 feature
components)

n= 20
(121 feature
components)

n= 25
(182 feature
components)

n= 30
(256 feature
components)

KNN (k= 1) 87.87% 86.43% 86.93% 87.63%
Random Forest (# tree = 120) 82.37% 83.06% 85.17% 82.90%
MLP 75.00% hidden layer size:10 73.33% hidden layer size:10 71.67% hidden layer size:40 70.00% hidden layer size:40
RBF Network 85.67% 88.17% 89.17% 89.33%
Adaptive Boosting 76.17% 74.75% 75.75% 73.00%
kNN (5-fold cv) 89.52% 89.03% 89.14% 90.48%
RBF network (5-fold cv) 89.18% 92.49% 93.63% 92.97%

Figure 6. ROC curve of each class by using Random Forest Classifier.

0.90 to 0.99, which demonstrates a good performance
of 3D ZDs.

In real world scenarios, the models obtained by 3D
imaging devices inevitably contain noise. Therefore, a
desirable shape descriptor should be insensitive to noise
in a certain acceptable range. To investigate the ZD’s
sensitivity to noise, we created four levels of point

cloud noises (including level 0, which denotes a noise-
less model) by randomly selecting one-third of the total
points in each model and adding random noise along the
normal direction for each such point. Each level can be
represented by a noise coefficient C that is proportional
to the noise levels. Figure 7 shows a point cloud model
with different levels of noise.
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Figure 7. Addition of noise to themodel (from top left to right, bottom left to right): (a) noise level 0 with C= 0.00, (b) noise level 1 with
C= 0.03, (c) noise level 2 with C= 0.06, (d) noise level 3 with C= 0.09.

Table 4. Classification performance for different levels
of noise (with n= 25).

Noise Level Level 0 Level 1 Level 2 Level 3

MLP 71.67% 70.00% 73.33% 70.00%
RBF Network 88.67% 87.83% 89.67% 88.50%
KNN (K= 1) 88.13% 87.17% 88.50% 86.93%
Random Forest 85.17% 83.07% 83.50% 83.83%

We use 3D ZD with an order of 25 to determine the
classification performance for models that have these
four different levels of noise, and the results are shown
in the Tab 4.

The data shown in Table 4 indicates that the clas-
sification accuracy does not change significantly as the
level of noise increases. This suggests that the 3D Zernike
descriptors are robust against random noise levels sim-
ilar to those observed in 3D sensing with commercial
cameras.

5. Conclusions

This work explores the classification task for 3D point
cloud models by incorporating supervised machine
learning approaches with powerful shape descriptors that
have traditionally been used for classifying polygonal
models. We consider two different approaches to fea-
ture extraction from point clouds, namely Light-Field
Descriptors built with either 2D Zernike or 2D ART
moments, and 3DZernikeDescriptors computed directly
on the point clouds. The major difference between
the two types of approaches is that the LFD-based
approaches rely on view-similarities and extract lower-
dimensional features (i.e. 2D shapes), while 3D ZD com-
pute features directly based on 3D data (i.e. 3D point

clouds). Our preliminary experimental results showed
that LFD+ART or LFD+2D ZD outperform 3D ZD in
terms of classification performance, but they all have
the potential to robustly and effectively classify 3D
point cloud models without requiring a mesh of the
point cloud. Furthermore, our experiments show that
3D Zernike descriptors are robust against noise levels
typically found in point cloud data output by current
commercial RGB-D cameras.

Our preliminary experiments show that the LFD+2D
ZD/ART and the 3D Zernike descriptors provide a
promising alternative to the current shape descriptors
employed for classifying noisy point clouds. Further-
more, the practicality of 3D Zernike descriptors coupled
with their potential for parallel implementations on the
GPU [1] makes them capable candidates for real-time
applications in 3D sensing and perception.
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