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Abstract

The modeling of many practical problems in design and manufac-
turing involving moving objects relies on sweeps and their boundaries,
which are mathematically described by the envelopes to the family of
shapes generated by the moving object. In many problems, such as
the design and analysis of higher pairs or tool path planning, con-
tact changes between the moving object and the boundary of its swept
volume become critical because they often translate into functional
changes of the system under consideration. However, the difficulty of
this task quickly escalates beyond the reach of existing approaches as
the complexity of the shape and motion increases.

We recently proposed a sweep boundary evaluator for general sweeps
in conjunction with efficient point sampling and surface reconstruc-
tion algorithms that relies on our novel point membership classifica-
tion (PMC) test for general solid sweeps. In this paper we describe
a new approach that automates the prediction of changes in the state
of contact between a shape of arbitrary complexity moving according
to an affine motion, and the boundary of its swept set. We show that
we can predict when and where such contact changes occur with only
minimal additional computational cost by exploiting the data output
by our sweep boundary evaluator. We discuss the problem and the
associated computational issues in a 2D framework, and we conclude
by discussing the extension of our approach to 3D moving objects.
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1 Introduction

A mechanism can be defined as a combination of connected bodies that move
together to perform a particular (mechanical) function. A kinematic pair
consists of two objects for which the relative motion between the objects
depends on the position, shape and continuous contact between the objects.
Depending on the type of contact between the objects, kinematic pairs are
classified into lower pairs (of exactly six types see [1]) and higher pairs. The
lower pairs are designed such that the coupling between the two objects that
comprise the pair occurs over a surface. Theoretically, all other kinematic
pairs are higher pairs, which represents a common and useful abstraction in
the design and analysis of many problems involving contact between moving
objects [2]. The geometry and motion of a higher pair are considerably more
complex than those of a lower pair, which is why the design and analysis of
higher pairs are, in general, non-trivial tasks.

Many practical design and manufacturing problems involving moving
mechanical parts can be modeled by using sweeps, such as the cam-follower,
gear or guiding mechanisms. In these cases, the generator, which can be one
of the objects of the pair, is swept and the complement of the sweep is used
to define the other object that completes the higher pair. The boundaries of
these sweeps are mathematically described by the envelopes to the family of
shapes generated by the moving object, which are tangent to every member
of the family during the motion [3, 4, 5]. One of the critical analyses of higher
pairs is the study of changes in the state of contact between the objects that
comprise the higher pair because such changes often translate into functional
changes of the system under consideration. In the mathematical realm, this
translates into the study of critical points (or singularities) of the functions
defining the envelopes [6].

Notably, the existence of these singularities in the envelopes of a moving
object are an indication that loss of contact may occur between the moving
object and the boundary of its swept set. This is important because the
contact boundaries of any object that may move in contact with the moving
shape during a prescribed motion must be a subset of the boundary of set
swept by the moving object [7]. The traditional methods addressing the loss
of contact in higher pairs, also known as undercutting, restrict the shape or
motion of the moving object and thus the geometry of the kinematic pair,
and often require difficult numerical computations, which, in turn, limits
their applicability [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Importantly,
undercutting conditions for some classes of mechanisms, such as wormgears,
do not seem to be known today.
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Figure 1: Typical relative motion of a cylindrical cam-follower mechanism:
no change in the state of contact occurs in (a) and this is reflected in a
constant number of contact points in (c); contact changes and undercutting
occur in (b) as illustrated in the graph shown in (d).

Consider the simple cam-roller follower mechanism illustrated in Figure
1(a). Regardless of the size of the follower, it is easy to construct motions
for which loss of contact occurs as shown in Figure 1(b). When undercutting
is not present, there are two points of contact between the circular follower
and the boundary envelopes as seen in Figures 1(a) and (c). The occurrence
of undercutting induces a change in the number of contact points, and the
evolution of this change for the case shown in Figure 1(b) is illustrated in
Figure 1(d).

The closed form solutions for the existence of undercutting published in
the literature can indeed be applied to simple cases such as the cam-follower
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mechanism shown in Figure 1. However, such solutions exist only for a
couple of simple cases among the many that can be encountered in prac-
tice. In more complex situations, engineers must still rely on their intuition
and experience to perform the contact analysis. Alternatively, configuration
spaces have been proposed both as a design tool [19] or as an analysis tool
[20] for problems involving higher pairs. The study of contacts in configu-
ration spaces is very appealing from a conceptual point of view because all
contact configurations are represented as geometric entities in these spaces
(i.,e., points, curves or surfaces). However, these (inevitably) higher dimen-
sional configuration spaces are constructed today only for planar motions
and objects that can be abstracted by piecewise linear geometries, which
limits their practical use.

We recently introduced a point membership classification (PMC) test for
general solid sweeping [21, 22], which classifies all points of space in which
the object moves into “in”, “on” and “out” points relative to the set swept
by the moving object. Our classification includes points that are in the un-
dercutting region, called fold points and fold regions - see Figure 1(b), or
points that are on both boundary and internal envelopes1. Moreover, we
have shown that our PMC test can be the basis of a stand-alone bound-
ary evaluator for general solid sweeping in conjunction with space sampling
algorithms [23]. This PMC test does not only provide complete geometric
information about the swept set, but can also return the parameters of the
motion that correspond to the instance when the boundary of the original
object passes through a given point of the sweep [6]. We briefly revisit this
issue in Section 2.

The central theme of this paper is that generating the point cloud corre-
sponding to the sweep boundary points based on our PMC test provides the
information needed to estimate the number of points of contact between the
moving object and the boundary of the sweep at any configuration during
the motion. Thus, changes in the state of contact between a moving object
and its envelopes will be revealed by changes in the computed number of
contact points. More importantly, these contact changes can be detected
with practically negligible additional computational cost for solids of arbi-
trary complexity moving according to general affine motions. To the best of
our knowledge, this paper presents the first known approach that can pre-
dict when and where contact changes occur within a higher pair of arbitrary
complexity.

1The internal envelopes are interior to the set swept by the moving object. For details,
see [21, 22].
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The paper is organized as follows. Section 2 introduces our approach for
estimating the number of contact points for 2-dimensional solids in planar
motion. We illustrate the capability of this approach in section 3 by exam-
ining contact changes in three common planar higher pairs. Our last section
summarizes the main features and limitations of our approach and discusses
its extension to 3D.

2 Detecting Changes in the State of Contact

Contact analysis involves parts that move relative to each other. In mechan-
ical design we focus on cases when the moving generator object S is a d-
dimensional solid moving in d-dimensional Euclidean space E

d, and d = 2, 3.
In this paper we assume that d = 2 and that motion M is a one parame-
ter family of transformations M(t), where parameter t ∈ [0, 1] belongs to a
normalized unit interval. Observe that any interval [a, b] can be normalized
to a unit interval [0, 1] without placing any additional restrictions on the
problem at hand.

In an absolute coordinate system, each point y of an object S that moves
according to M describes a trajectory Ty = {yq | q ∈ M}. However, when
observed from a moving coordinate system rigidly attached to the moving
set S, the same point y will appear to describe a different trajectory denoted
by T̂y. This inverted trajectory curve T̂y can be computed not only for points
of S, but also for any other point x ∈ E

d of the space as

T̂x = {xq | q ∈ M̂},

where M̂ is the inverted motion defined as the inverse of M(t) for every
value of t [5]. It is not difficult to show that the inverted trajectory T̂x of
a point x contains all points of space E

d that pass through the given point
x when moved according to motion M [24]. Furthermore, both T and T̂

can be (re)parameterized in a manner consistent with the parametrization
of motion M(t).

2.1 Contact Analysis via Sweep Boundary Evaluation

Our PMC test described in [22] is defined in terms of inverted trajectory
tests against the original geometric representation of the generator object S.
More precisely, by intersecting the inverted trajectory of any point x of the
space with the generator S in its initial configuration, one can classify point
x as being “in”, “on” or “out” relative to the set swept by S. In fact our
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PMC test induces a finer decomposition of the space because the “in” points
are themselves classified into regular, fold and fold boundary points – see
[21] for details. Importantly, this test can be implemented in any geometric
representation that supports curve-solid intersections.

If motion M and inverted trajectories T̂x are consistently parameterized,
then this intersection test outputs not only the correct classification of point
x relative to the swept set, but also the parameters t of motion M when
boundary points of S pass through x during M . Importantly, these bound-
ary points (if they exist) are the only boundary points of S that would pass
through the given x during M [24].

The ability to perform the PMC implies that one could sample the space
in which the object moves and perform the sweep boundary evaluation. One
approach is described in [23] where we used an octree decomposition of the
space as a sampling strategy, but other approaches such as marching cubes
[25] or Monte Carlo based sampling could be also employed. Through post-
processing of these sweep boundary points and corresponding parameter
values, we can actually compute the number of (sampled) contact points
between S and its boundary envelopes that fall within specific parameter in-
tervals. Note that these computations require only postprocessing of existing
data comprised of points on the boundary of the sweep and their associated
parameter values. Thus, as the motion parameter increases monotonically,
a sudden change in the number of contact points would indicate a change
in the state of contact between the moving object S and its envelopes that
are on the boundary of the set sweep(S,M). For the example shown in
Figure 1(b), the follower initially has two contact points with the boundary
of its swept set, but this state of contact changes as the prescribed motion
progresses.

Parametric Discretization

A straightforward algorithm to count the number of contact points can be
developed by discretizing the parameter interval into smaller subintervals of,
say, equal lengths followed by counting the number of points that fall within
every particular interval. In other words, one can employ a parametric
discretization to count the number of contact points. By examining the
number of points that fall within two such successive intervals, one can detect
large changes in the number of contact points between adjacent intervals. A
pseudo code of this algorithm is shown in Algorithm 1.

Vector x contains the list of boundary points of sweep(S,M) output by
the boundary evaluator. For each such point xi, the boundary evaluator
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input : (a) vector of points x together with an array of vectors
of parameter values such that each xi has a vector of
parameters ti = [ti0, ti1, ..., tik] for k ∈ N;
(b) length ∆t of the parameter subinterval;

output: parameter ranges of motion M(t) where the state of
contact between S and its boundary envelopes is
changing;

Discretize the parameter interval [0, 1] based on the prescribed1

subinterval ∆t;
Sort all points xi of x based on the values of ti of xi. Point xi will2

appear in the sorted list for every parameter value in its vector of
parameters ti;
Count the number of points in each parameter interval, and store3

the number of points in the ith interval as ni;
Determine “large” changes in the number of points between4

adjacent parameter intervals, i.e., between ni and ni+1;
Output the intervals that have a “significantly different” number5

of points relative to the adjacent intervals;

Algorithm 1: An outline of the algorithm for detecting contact
changes between a moving solid and the boundary of its swept set
based on parametric discretization.

returns a list of parameter values where boundary points of S will pass
through xi. Observe that what is considered in step 5 of the algorithm
to be a “significantly different” change in the number of contact points
will strongly depend on the dimension of the space and on the sampling
algorithm being used.

To illustrate the output of this algorithm, consider a 2-dimensional disk
moving according to a planar rigid body motion such that the center of the
disk moves along a semicircle or an elliptical trajectory as shown in Figure 2.
Algorithm 1 outputs the data shown in Figure 2(c) for the circular motion
during which the disk has exactly two contact points with its envelopes
throughout the motion. During the elliptical motion, the state of contact
between the disk and its boundary envelopes is changing, and the output of
Algorithm 1 for that motion is shown in Figure 2(d). One can see that even
though the parameter intervals do not contain a constant number of points,
due in this case to the non-uniformity of the sampling2, there are no sudden

2The octree cells are aligned with the coordinate axes in this example. Therefore the
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(and large) jumps in the number of points between successive intervals in
Figure 2(c). On the other hand, large jumps in the number of points are
apparent in Figure 2(d) that corresponds to the elliptical trajectory.

In some cases, a correct interpretation of these results may be difficult
because the changes in the computed number of contact points may not be
sufficiently large. In a few words, this issue occurs because we are sampling
in the Euclidean space, but we are counting points in the parameter space,
and the two spaces do not share the same distance metric.

Geometric discretization

A better alternative is to perform first a uniform discretization of the point
cloud containing points of the envelopes into elementary boundary units,
and then translate these geometric units of equal size into (non-uniform)
parametric intervals in the parameter space. Since our sampling uses oc-
trees, and since all our partial octree cells that capture boundary points
have the same size, we use a “Manhattan” distance metric to measure these
elementary boundary units. This is illustrated in Figure 3(a). A parameter
interval [ta, tb] corresponds to each such boundary unit of length ∆g, and
these parameter intervals will, in general, not be of the same length despite
the fact that all boundary units have equal size.

Importantly, each such boundary unit will have one contact point asso-
ciated with it, which remains a valid assumption as long as the length of
the boundary unit is smaller than the distance between any two boundary
points of S that are in contact with the boundary of the set swept by S at
any parameter t of M .

Traversing the computed sweep boundary points – one boundary unit
at a time, collecting all parametric intervals [ta, tb], and aligning them on
the real line results in a finer discretization of the parametric interval [0, 1]
because some of these intervals overlap. By adding the corresponding con-
tact points within each such parametric interval, we obtain the number of
contact points for each interval as shown in Figure 3(b). Clearly, the smaller
the size of the boundary unit the higher the accuracy of predicting contact
changes, which is limited by the resolution of the original sampling. It is
important to note that computing the number of contact points based on the
Manhattan distance metric results in the correct number of contact points

distance between the centers of two adjacent partial cells varies during the motion: it is
minimum when the angle between the tangent and the x axis is a multiple of π/2, and
maximum when the angle is a multiple of 45o. Note that similar effects can be observed
for any alignment of the octree cells.
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and correct values of the motion parameter where contact changes occur up
to the resolution prescribed by ∆g.

Let’s re-examine the case shown in Figure 1. The computed number of
contact points between this moving circular follower and its boundary has
been computed based on Manhattan distance metric as described above and
illustrated in Figure 4. This number of contact points is two everywhere in
Figure 4(a), but is either two or one for the case shown in Figure 4(b). The
change in the state of contact occurs at t = t2c and t = t4c where the number
of contact points goes down to one and then back to two as t goes from 0
to 1. Here t2c and is t4c are the computed values of the parameter t where
contact changes are expected to occur. Note that the computed state of
contact is the same as the estimated one shown in Figures 1(c) and (d).

3 Examples

In this section we describe three examples to verify our prototype implemen-
tation and illustrate some of the main capabilities of our approach to detect
contact changes between a moving object and the boundary of its swept
set. We used our sweep boundary evaluator described in [23] implemented
in Visual Studio and Parasolid.

The first example in Figure 5 shows a planar non-convex shape moving
according to a planar rigid body motion. Figure 5(a) illustrates the com-
puted boundary of swept set S which translates according to trajectory T .
Two intermediate configurations of set S, denoted by Sq and Sp, are also
displayed in the same figure. The computed state of contact and the contact
changes between S and its boundary envelopes are shown in Figure 5(b).

Our second example in Figure 6(a) shows a flat-faced cam-follower mech-
anism that moves according to a prescribed motion. For this particular case,
the contact between the follower and its boundary envelopes is changing a
number of times during a complete cycle of the motion. Our algorithm
outputs not only when these changes occur during the motion (i.,e., the
corresponding parameter values), but also the state of contact at any pa-
rameter value t in terms of the number of contact points between S and the
boundary envelopes, as illustrated in Figure 6(b).

The last example focuses on a rotary lobe pump whose lobes rotate
around fixed axes in space. Figure 7 illustrates a subset of the relative
motion between the two lobes as one of the lobes translates and rotates
relative to the second lobe. The computed sweep boundary and several
intermediate configurations of the moving lobe are displayed in Figure 7(a).
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The computed state of contact shown in Figure 7(b) reveals where and
when contact changes occur during the motion. At configuration Sq, the
number of contact points is two, while at configuration Sr there is only one
contact point. On the other hand, the number of contact points significantly
increases at configuration Sp, where the lobe shares with its envelopes a
whole curve segment3.

4 Conclusions

Numerous engineering problems involving moving physical artifacts can be
abstracted by a moving solid and its swept set of points. One of these
important problems is the design and manufacturing of higher pairs, where
the state of contact within the pair dictates the functional behavior of the
corresponding mechanism.

In this paper we introduce a new generic approach to perform automatic
contact analysis between a moving object and its envelopes that form the
boundary of the set swept by the moving shape. Our approach exploits
the same space sampling used to perform the sweep boundary evaluation to
determine the number of contact points between the object and its boundary
envelopes throughout the parameter range defining the motion. Even though
we have focused here on the planar case, our approach can be extended to
3-dimensional moving solids by using the Manhattan distance metric to
measure the surface area of the boundary units. These boundary units will
be 2-dimensional surface patches in a 3D space instead of 1-dimensional
curve segments in a 2D space as was the case in this paper. Furthermore,
each such boundary unit will have the same area as measured with the
Manhattan distance metric proposed in this paper.

The accuracy of the computed state of contact is limited by the quality
of the space sampling. This implies that this approach may not detect a
change in the state of contact that occurs within a parameter range that is
comparable to the parametric resolution dictated by the sampling. For the
example illustrated in Figure 3(b), if t1−t4 is of the same order of magnitude
as min(tb − ta) for all partial cells, the changes in contact at t4 and t1 could
be missed.

It is important to note that our approach is generic in the sense that
it can be applied to arbitrarily complex shapes moving according to affine
motions (not necessarily rigid). To the best of our knowledge, this is the

3In order to be able to show the detail of how the contact changes, Figure 7(b) only
shows contact points up to 3.
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first approach that is capable of predicting contact changes for shapes of ar-
bitrary complexity. At the same time, this approach can be implemented in
any representation scheme that supports curve-solid intersections (for details
see [23]), and automates the task of contact analysis between a moving object
and its boundary envelopes. Equally important, these contact changes can
be detected with practically negligible additional computational cost com-
pared to that of the sweep boundary evaluation itself for solids of arbitrary
complexity moving according to general affine motions.
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Figure 2: A planar disk S moving according to a circular (a) or elliptical
(b) rigid body motion; number of contacts computed based on parametric
discretization into 256 equal intervals for the circular motion (c) and the
elliptical motion (d).
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Figure 3: (a) A “Manhattan” distance metric is used to measure boundary
units of equal size for our octree-based sampling; (b) estimating the number
of contact points between the moving object and its envelopes is achieved
by combining the number of contact points for each parameter interval ob-
tained from individual intervals [ta, tb]. Figure (b) illustrates such a final
decomposition of interval [0, 1], and of the final number of contact points.

Figure 4: (a) and (b) the computed number of contact points based on Man-
hattan distance and the octree decomposition of space for the case shown
in Figures 1(a) and (b).
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Figure 5: (a) The boundary envelopes of a planar non-convex shape S trans-
lating in the plane; (b) the computed state of contact between S and its
boundary envelopes.
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Figure 6: (a) The boundary envelopes of a flat faced cam-follower mechanism
moving according to a planar rigid body motion including translation and
rotation; (b) the computed state of contact between the follower and its
boundary envelopes.
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Figure 7: (a) A lobe of a rotary lobe pump moving according to a planar rigid
body motion comprised of both translation and rotation; (b) the computed
state of contact.
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