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Abstract

The mathematical envelopes to families of both rigid and non-rigid moving shapes play a fun-
damental role in a variety of problems from very diverse application domains, from engineering
design and manufacturing to computer graphics and computer assisted surgery. Geometric sin-
gularities in these envelopes are known to induce malfunctions or unintended system behavior,
and the corresponding theoretical and computational difficulties induced by these singularities
are not only massive, but also well documented.

We describe a new approach to detect and quantify the envelope singularities induced by
2-dimensional shapes of arbitrary complexity moving according to general non-periodic and non-
singular planar affine motions. Our approach, which does not require any envelope computations,
is reframing the problem in terms of “fold points” and “fold regions” in the neighborhood of ge-
ometric singularities, and we show that the existence of these fold points is a necessary condition
for the existence of singularities. We establish a mathematically well defined duality between the
2-dimensional Euclidean space in which the motion takes place and a 2 + 1 spacetime domain.
Based on this duality, we recast the problem of detecting and quantifying geometric singularities
into inherently parallel tests against the original geometric representation in the 2-dimensional
Euclidean space. We conclude by discussing the significance of our results, and the extension of
our approach to 3-dimensional moving shapes.

Keywords: singularities, envelopes, undercutting, fold points, sweep, higher pairs.

1 Motivation

Sweeping an object through space is one of the fundamental operations in geometric modeling [31].
Furthermore, many practical problems from very diverse fields ranging from engineering design and
manufacturing to robotics, computer graphics and computer assisted surgery can be formulated in
terms of sweeps [42, 14, 40, 39, 25, 33]. The boundary of a set swept by an object in motion is
expressed mathematically as the envelope to the family of shapes defined by the moving object
[5]. These envelopes, which are defined as solutions to specific differential equations, are known to
exhibit geometric singularities. In practical terms, these envelope singularities induce malfunctions
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or unintended system behavior in all the corresponding applications1. However, the theoretical
and computational difficulties induced by these singularities are not only massive, but also well
documented.

Consider a simple cam-follower mechanism used to transform a rotation with constant angular
velocity of a shaft into a relatively complex output motion, such as that illustrated in Figure 1.
Such a design problem is typically formulated in terms of the set swept by the moving follower
relative to the cam [40, 47, 17]. The boundary of such a cam is a subset of the envelopes of the
moving follower (in this case a 2D disk). Though, for a given follower as well as cam and follower
motions, the envelopes of the moving follower will not always be in contact with the follower. In
other words, a cam that would move the follower according to the prescribed motion may not
exist. This case is illustrated in Figure 1, where the follower is moving relative to the cam such
that its center moves along the specified trajectory. In this example, loss of contact between the
follower and the resulting external cam would occur twice during a complete cycle of the relative
motion. Observe that the envelopes corresponding to the loss of contact have singular points, which
is discussed in more detail in section 2. This phenomenon is known as undercutting in the design
of higher kinematic pairs, but it obviously occurs in all the application domains mentioned above.
In principle, one can change either the motion, the geometry or a combination of these to eliminate
the loss of contact once such a condition is detected.

However, it is intuitively clear that the development of an algorithmic approach to eliminate this
condition would require knowledge not only of whether singularities exist, but also of how severe
this condition is, e.g., the severity of the loss of contact. Furthermore, the knowledge of what part
of the boundary of the moving object is responsible for generating these singularities during the
given motion could lead to performing systematic geometric changes that eliminate this condition.

Figure 1: A cylindrical follower in relative motion generates singularities in its envelopes and
therefore undercutting in the cam that is being designed. The trajectory tracks the motion of the
center of the disk.

Unfortunately, the current approaches to detect these singularities are fairly specialized and

1It is worth noting that similar geometric singularities appear in problems that are characterized by moving fronts
– see for example [35].
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scattered across all these application domains. The more advanced techniques require the ability
to compute or approximate the envelopes, and most are applicable only to restricted classes of ge-
ometries and motions, while some practical cases have no known solution (see for example [9]). The
fact that these approaches provide (at most) a binary answer, even for the classes of problems that
they can handle, implies that the elimination of these singularities (e.g., via changes in geometry,
motion or both) is forced to rely only on the accumulated engineering experience and heuristics.
On the other hand, the ability to systematically detect, quantify, and eliminate these singularities,
and hence the corresponding malfunctions, would be extremely beneficial to all these application
domains.

1.1 Existing Approaches to Detecting Envelope Singularities

The reasons for this status quo are well documented: mathematical singularities are known to create
extreme difficulties, not only in the analytical realm, but also in the computational domain. These
difficulties are discussed in detail in many other references (see for example [44, 2, 22, 35, 30]), so
we will not focus on them here.

Broadly, there are two categories of approaches for detecting geometric singularities in the
envelopes of moving surfaces. In the first category we find those (traditional) approaches that
provide a closed form solution to the existence of these singularities. Unfortunately, such conditions
can be derived only in those cases that place severe restrictions on the geometry and motion, which
prevents them from being applicable to most “interesting” practical situations.

The second category of approaches rely on the theory on envelopes to detect these singularities,
and, consequently, the associated system malfunctions. Though, these approaches are limited by
the ability to compute or approximate the envelopes [25, 28, 30], which remains a difficult problem
for general shapes and motions. Hence, these approaches are also forced to restrict the class of
problems so that the envelopes can be approximated.

In the field of mechanical design, the loss of contact (or undercutting) in a higher kinematic pair
has been known for over a century and represents one of the significant roadblocks in the design and
manufacturing of higher pairs. Many of the earlier techniques for detecting loss of contact in the
design of higher pairs fall in the first category mentioned above, and exploit the relatively simple
geometry of the pairs (cylindrical or planar follower). Thus, these techniques can be applied only

to the cases satisfying very specific and limiting geometric assumptions [8, 37]. The recent methods
to design cam mechanisms have used envelope computations for cylindrical or flat faced followers
[46, 47, 40]. Almost independently from these efforts, differential geometry has been used in the
gear design literature to develop mathematical conditions of non-existence for envelope singularities
[24, 22, 27, 41, 3, 13, 1, 7]. The derivation of these conditions relies on a theorem proposed by
Litvin [23] relating the existence of the singular points to the zero valued sliding velocity at the
contact point (for details see [22, 7]). All these techniques address specific classes of problems,
and require difficult numerical computations, which, in turn, limit their applicability. Moreover,
undercutting conditions for some classes of gearing mechanisms, such as wormgears, do not seem
to be known today.

The need to detect the singularities in the envelopes occurs in other applications as well. For
example, envelope singularities are used in computer aided manufacturing and computer aided
process planning to describe workpiece undercutting resulting in part defects [14, 45, 32, 43, 4]. In
this context, similar techniques based on the theory of envelopes have been coupled with assump-
tions on simple tool geometries to develop specific undercutting conditions. Singularities and their
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computational properties also play a significant role in sweep boundary evaluation (see for exam-
ple [25, 28, 30]); in Minkowski operations and offsets computations [34, 20]; in problems involving
moving fronts [35], and in computing the geometry of shadows in computer graphics applications
[10, 29, 19]. One of the recent techniques for computing offset curves and surfaces described in [33]
uses rational distance maps to eliminate the portions of the envelopes that are part of the set swept
by a moving object. Note that the approach discussed in [33] is aimed at computing the boundary
of the sweep, and does not quantify the regions where the loss of contact occurs. On the other
hand, the approach that we propose in this paper could be used not only to compute these regions
of loss of contact, but also to perform sweep boundary evaluation and trimming for moving planar
objects.

Observe that the recent attempts to detect the envelope singularities rely on envelope compu-
tations one way or another, and face the limitations discussed above. Importantly, none of these
approaches quantifies the severity of these singularities, or of the associated malfunctions (such as
the undercutting or overcutting in higher kinematic pairs), and give practically no support to the
task of eliminating these singularities.

1.2 Outline

In this paper we focus on the class of problems that can be formulated in terms of sweeps, such
as the higher kinematic pairs. We will focus here on planar solid shapes moving according to
a non-singular affine planar motion, which is a reasonable assumption since a large number of
practical situations can be abstracted to such a 2-dimensional problem (see for example the case
of 2-dimensional mechanisms discussed in [18]).

Our main goals are (1) the rigorous formulation of the necessary conditions for the existence
of envelope singularities applicable to arbitrarily complex planar shapes moving according to affine
planar motions; (2) to show that these conditions lead not only to the detection, but also to
the quantification of the malfunction induced by these singularities; (3) to demonstrate that our
approach does not require envelope computations; and (4) to discuss how our approach can be
extended to 3-dimensional problems.

We formulate our approach in section 2, and we discuss the associated computational issues in
section 2.3 in the context of our prototype implementation as well as of several different examples
illustrated in section 3. Finally, section 4 summarizes the contributions of this paper and explores
the extension of our approach to 3-dimensional problems.

2 Formulation

2.1 Preliminaries

2.1.1 Motions and trajectories

Following the notation in [16], assume that motion M is a one-parameter family of transformations
M(t), and that parameter t belongs to the normalized unit interval. At every instant t = a, a set
X moves to a new location in space determined by transformation q = M(a). We will use the
superscript notation to define the transformed (set of) points as Xq = XM(a) = M(a)X.

The transformation q ∈ M(t) for some instantaneous value t = a determines the position and
orientation of X relative to a fixed coordinate system. In an absolute coordinate system, every
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point x of X will describe a trajectory Tx = {xq | q ∈ M} in the d-dimensional Euclidean space
E

d in which the motion takes place. However, when observed from a moving coordinate system
rigidly attached to the moving set X, the same point x will appear to describe a different trajectory
denoted by T̂x

T̂x = {xp | p ∈ M̂} (1)

where M̂ is the inverted motion, i.e., M̂(t) is the inverse of M(t) for every value of t [16].
It can be shown [15] that the inverted trajectory T̂x contains all points y ∈ Ed that will pass

through a given point x when moved according to motion M (see one example in Figure 5):

T̂x = {y ∈ Ed | x ∈ Ty} (2)

2.1.2 Envelopes and their Geometric Interpretation

A moving object in space describes a family of shapes. By definition, the envelopes to this family
of shapes are the sets of points (generally curves in 2D and surfaces in 3D) that are tangent to
the family of shapes [5]. Thus, the envelopes contain any and all possible contact points with the
moving object, commonly known as the generator, which implies that the boundary of any part
that has to move in contact with the generator must be a subset of the envelopes, or otherwise
contact will not occur for the prescribed motion.

Figure 2: Envelope D is the apparent contour of Σ in the direction of t.

To illustrate the geometric significance of the envelopes, consider the family of planar disks
shown in Figure 2. The envelopes to this family are well defined as the curves tangent to every disk
in the family [5]. If the family is generated by a disk moving according to a planar motion, then
the envelopes D are the curves tangent to the moving disk at every configuration of the motion2.
From a geometric perspective, determining the envelope D to a shape moving in Ed amounts to
constructing the higher dimensional surface Σ in the spacetime domain Ed+1, and projecting this

2We follow here the notation from [5], which also contains a good introduction to the theory of envelopes.
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surface back onto Ed (see also [26, 30]). Note that this spacetime domain contains the parameter
t of motion M(t) as the additional dimension. By construction, the original disk is moving in this
space always parallel with itself, and the envelope set D is in fact the apparent contour of Σ in the
direction of t (see Figure 2 and [5]).

The set swept by a moving shape in space is defined as an infinite union operation of the object
positioned at all the configurations of the motion (see for example [26, 16]). Furthermore, it is
known that the boundary of the set swept (or occupied) by the moving object during a prescribed
motion M is formed by a subset of the envelopes, as well as by subsets of the boundary of the
object at the beginning and end configurations of M [26, 4]. Therefore, computing the boundary
of the set swept by a moving object requires the computation of envelope points, which entails
essentially two steps. The first one focuses on the generation of all points that are in the envelope
set, which may or may not lie on the boundary of the set swept by a moving set X. The second step
involves trimming those subsets of the envelope that are not part of the boundary of the sweep.
Numerous boundary evaluation algorithms have been developed in solid and geometric modeling
literature that implement some versions of the two steps above, such as [25, 26, 38, 4]. There are
also several algorithms for computing the boundary of sweep for special cases (see for example [21]),
but performing boundary evaluation for general sweeps remains difficult.

2.1.3 Envelope Singularities, Fold Points and Undercutting

One interesting result in the theory of singularities is due to Whitney [44], which observed that there
are only two types of envelope singularities while all others are vanishing under small perturbations.
The first type of singularity appears at the equatorial points of a sphere when the sphere is projected
onto the plane (see also [2]). The other type of singularity, i.e., the cusp, appears when projecting
surfaces such as the one shown in Figure 3 onto a plane3. In the envelope theory, the existence of
cusps in Σ are an indication of singularities in the envelope set (i.e., the projection of Σ onto the
original space), but detecting the existence of these cusps is a hard problem for general shapes and
motions.

Except for some degenerate cases, the projection of a cusp point of Σ contains some special
points in its neighborhood, such that more than one point of Σ projects (or folds) onto each such
point. This is illustrated in Figure 3 where the cusp is labeled as P ′

3, its projection onto Ed is
P3, and P2 is a fold point of the plane. Observe that in this case there are three points of Σ that
project onto the same “fold” point P2.

Note that our fold and regular points, formally defined in [11], belong to the original plane
in which the motion takes place. By contrast, the mathematical terminology of regular and fold
points refers to specific points that belong to surface Σ in the d+1 dimensional space [5, 44]. While
this can potentially be a source of confusion, our specific choice of terminology is rooted in the fact
that our fold points are obtained by projecting the apparent folds of surface Σ (see Figure 3) onto
the plane. It is also important to observe that we only use surface Σ to describe our approach, and
that all our computations take place in a space one dimension lower than the space where Σ lies.

A critical observation that we make here is that the foldings of Σ in the neighborhood of
these cusps are responsible for generating the areas (and the envelopes) where loss of contact, or

3Such a surface is also called a catastrophe surface. The term originates in the catastrophe theory [2] and illus-
trates the transformation of continuous and smooth events into discrete ones. In particular, the catastrophe surface
illustrates the singularities obtained by projecting a smooth surface onto a plane, which was the fundamental focus
of Whitney’s landmark paper [44].
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Figure 3: Projecting a surface onto a plane: Points P1 and P4 are regular points of the plane,
i.e., they have only one inverse image in Σ; point P3 is the projection of the cusp point of Σ, and
point P2 is a “fold” point of the plane, which has multiple inverse images in Σ that “fold” onto P2.
Formal definitions of regular, and fold points in the plane are given in [11].

undercutting, will occur. This is clearly seen in Figure 4 which shows a disk translating4 along a
prescribed curve. If one constructs the Ed+1 hyperspace, where the extra dimension is the parameter
t of motion M , then disk S is sweeping a well defined set Σ in this hyperspace as it maintains a
constant orientation perpendicular to the t axis. The projection of surface Σ onto the Ed space
is the set sweep(S,M) bounded by envelope D. In this example Σ folds onto itself near the cusp
during the projection.

Our discussion suggests that the loss of contact due to envelope singularities can intuitively
be defined in terms of the set of fold points in Ed. For the case shown in Figure 4, if this set of
fold points is empty, there is no loss of contact for the given shape and motion. Consequently, a
non-empty set may indicate that loss of contact is present, and the size of the set quantifies the
severity of this loss of contact.

Not only that for every cusp point there are infinitely many fold points, but detecting fold points
appears to be conceptually and computationally more straightforward than detecting singularities.
We note that for the case shown in Figure 4, one can determine these fold points by intersecting
vertical lines with surface Σ, and by counting the number of intersections. If a given line intersects
this surface more than twice, surface Σ will fold onto itself, thus generating the undercut area. This
is illustrated in Figure 4(c) where line L2 passing through a “regular point” intersects surface Σ
only twice, while a vertical line L1 passing through a fold point intersects Σ exactly four times.

In the next section we will see that this condition is necessary, but not sufficient to determine
the fold points that generate loss of contact.

4We only consider translations in Figure 4 for illustrative purposes, but these “folds” in Σ occur for general
one-parameter motions as well.
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Figure 4: Singularities in the envelope of a disks S that move along a specified curve indicate
that undercutting is present. These singularities are difficult to detect for shapes and motions of
arbitrary complexity.

2.2 Our Approach

The discussion above indicates that detecting fold points by intersecting lines with surface Σ would
require the construction of a computer representation for Σ. If the original shape is 2-dimensional,
then Σ is 3-dimensional and can be using a variety of techniques, some of which are supported by
current CAD systems. However, it is beyond the ability of current CAD systems to handle the
case when the object is 3-dimensional, and when Σ lives in a 4-dimensional spacetime domain. In
this case, one could convert the original representation of the moving object to, say, an implicit
representation, and construct Σ in an implicit form. As a result, the intersection between the 4D
line and the 4D Σ would reduce to some numerical root-finding procedures. However, constructing
an implicit representation of an object of arbitrary complexity, although possible in principle, is
still an open problem today [36, 6].

2.2.1 The dual problem

Consider the 2-dimensional solid shape S shown in Figure 5 that moves according to a planar rigid
body motion M . In the plane, set S will sweep a set sweep(S,M) – shaded in Figure 5(b), while
in the higher dimensional space, the same set S will generate a solid bounded by surface Σ. The
fact that Σ bounds a solid follows from the assumption that S is solid and that the parameter of
the motion increases monotonically. A vertical line parallel to the t axis passing through a point
P0 of the plane may or may not intersect Σ depending on where point P0 is located in the plane.
Since the set bounded by Σ is a solid, if P0 is a regular point then the line will intersect Σ exactly
twice5: first when the line “enters” the set bounded by Σ, and second when the line “exits” this
set. Based on the same arguments, if P0 is a fold point, then a vertical line passing through P0 will
intersect Σ an even number of times. If P0 is on the envelope, the number of intersections between

5See [11] for a detailed discussion of all the possible intersection cases.

8



Figure 5: The duality between the line-Σ intersection and the inverted trajectory-original solid

intersection. This rigid body motion consists of both translation along a prescribed curve and
rotation by π/2. The forward trajectories are shown as dotted curves, all passing through point

P0.

the line and Σ will still be even6, but the line will also be tangent to Σ at one or more points.
Let’s examine the geometric significance of each such intersection point P v

i between the vertical
line and Σ. Since each such point lies on Σ, which is generated by points on the boundary of S0,
then there exists a subset of the boundary of S0 whose elements pass through P0 for some values
of t. Moreover, different values of t = ai are associated with each intersection point, and these
values represent the coordinates of each P v

i in the direction of t. In other words, there exists only
one point on the boundary of S0 that will overlap with each Pi for each of these parameter values
ai ∈ [0, 1].

The above discussion implies that detecting intersection points P v
i on Σ that correspond to

a point P0 in the plane is equivalent to determining the boundary points of S0 that will pass
through P0 at some parameter value t during the motion. The key observation is that, based on
the properties of the inverted trajectories outlined in section 2.1, these boundary points of S0 must
lie on the inverted trajectory passing through point P0. These points are labeled as P h

i in Figure
5.

Thus, this duality recasts the problem of detecting fold points in terms of straightforward curve

→ 2-dimensional solid intersections against the original boundary representation of shape S0. As
discussed in section 2.1, the trajectories of all these boundary points P h

i of S0 will pass through
point P0, which is illustrated in Figure 5(b). Moreover, the set of all the fold points are the fold

regions corresponding to the given shape and motion, while the boundaries of these fold regions
are the fold boundary points.

Importantly, our approach relies on a Point Membership Classification (PMC) test for the fold
regions (formally defined in [11]), which implies that any geometric property of these fold regions
can, in principle, be computed [31].

6Note that number 0 is an even number.
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2.2.2 The Functional Contacts

The existence of fold points, by itself, does not imply that complete loss of contact will occur
between the moving object and its envelope set. In other words, the existence of fold points is a
necessary, but not sufficient condition for the complete loss of contact between a moving object and
its envelopes.

To see why, consider the circular disk that rotates around its “center” as shown in Figure 6.
The notch will generate fold points, yet loss of contact between the disk and its envelopes does not
occur. In this case, the explanation is in fact surprisingly intuitive: the notch can never contact
the envelopes for this motion so the fact that the notch generates a fold region has no implications
on the contact. Another example is shown in Figure 8(a) where the object maintains some contact
points with its envelopes at every configuration, despite the three fold regions (see also section 3).

Figure 6: Fold points may exist without singularities in the envelope.

More generally, observe that contact is a local “event” and that the same object may have
multiple contacts, i.e., contacts along disjoint subsets of the boundary of the object. For general
motions, some of these contacting regions between a moving object and its envelope set may appear
and disappear while the object maintains some contact points with its envelope set. However, in
many engineering applications only a subset of these contacts will be functional, (i.e., will contribute
to the function of the system) while the remaining contacts will be non-functional. Thus, the fact
that these non-functional contacts vanish should have no consequence on the functionality of the
system.

These arguments naturally lead to the question of what makes a specific contact point functional.
While the answer to this question will be application dependent, in this paper we consider that
a contact is functional if it is prescribed by the design engineer, so in this sense it captures the
design intent. Thus we assume that a system malfunction will occur if contact is lost between the
prescribed contact boundary and the corresponding envelopes to the moving object. In other words,
if a fold region is “generated” by the prescribed contact boundary, then functional loss of contact
occurs. Otherwise, that particular fold region has no influence on the functional loss of contact.
While the above statement seems intuitive, stating it formally is far from trivial and requires a
careful definition of what we mean by a fold region being “generated” by a prescribed subset of
boundary points.
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The practical implications of these observations are important. A good design engineer that
designs higher pairs can identify the expected contact boundary within the pair and can therefore
specify it, or at least in principle. For example a designer would specify the circular arc in Figure
6 as a contact boundary but not the notch. Thus, if loss of contact is detected for given shapes,
motions and contact specifications, then one can change either the contact boundary, the motion,
the geometry or a combination of these in order to eliminate the loss of contact.

By intersecting the inverted trajectories with the boundary of the moving set, we can specifically
identify the points P h

i ∈ ∂S that move through a given fold region of the space. Establishing a
correlation between these points and specific loss of (or changes in) contacts – as described above –
will provide the subset of ∂S that is responsible for specific changes in the contact between S and
its envelopes. In turn, this can further enable systematic geometric changes to the moving shape S.
Our current work focuses on developing sufficient conditions for detecting functional loss of contact
that would complement the necessary conditions in terms of the existence of fold regions. However,
the inverted trajectory – solid intersections induce a decomposition of the plane into [11]

• regular, fold and fold boundary points that are in the interior of the set swept by the moving
object,

• sweep boundary points, and

• points that are out of the sweep.

Note that this decomposition can be used to interactively study the contact between the moving
object and its envelopes as illustrated in section 3.

2.3 Main Algorithm and Some Computational Issues

Based on the above discussion, we can construct an algorithm to detect and quantify the fold
points of a planar solid shape moving according to a non-singular affine planar motion that relies
on intersection tests between the inverted trajectories and the original representation of the shape.
Our algorithm also outputs the boundary points P h

i of S0 that will pass through each detected fold
region during M . The main steps of our algorithm are shown below.

Clearly, the fact that our approach relies on a PMC test for the fold points implies that these
regions can be computed either exactly (within the machine precision) or approximately depending
on what strategy is used to sample the points in the plane. Furthermore, given a motion M , one
can generate exact or approximate trajectories as well as inverted trajectories for any point in
the space. The curve-surface intersection between T̂ and ∂S will depend on the representations
used for both T̂ and S. If the solid is represented by its boundary representation, then the curve-
boundary intersection algorithm reduces to curve-face intersection between the inverted trajectory
and the corresponding faces of the solid. This is a standard operation in CAD that is efficiently
implemented in all commercial CAD systems. Furthermore, finding the number of intersections
and tangencies between the inverted trajectory and the original shape representation (step 5 in
algorithm 1) amounts to careful neighborhood analysis for the intersection points T̂x ∩ ∂S. This is
a critical step as it must handle the degenerate cases as well as the corresponding numerical errors.

Once the neighborhood analysis is carried out and the tangencies are identified for each point
x ∈ T̂x ∩ ∂S, the classification of each x from step 6 of the algorithm follows the point membership
test for general sweeps outlined in [11]. The set of all fold boundary points will form the boundary
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Algorithm 1: An outline of the algorithm for detecting and quantifying fold points in the
plane for a moving solid object.

input : Solid planar shape S, non-singular affine planar motion M
output: Non-empty fold regions generated by ∂S throughout M ; the subsets of boundary

points of ∂S that are passing through each fold region

Compute a point sampling PS of the plane in which the motion takes place;1

for every point x ∈ PS do2

Compute the inverted trajectory T̂x that corresponds to the inverted motion M̂ ;3

Compute T̂x ∩ ∂S;4

Find the number of intersections ix and tangencies tx between T̂x and ∂S;5

Classify x based on the values of ix and tx as either an interior fold point, a fold6

boundary point, a regular point, a sweep boundary point, or a point exterior to the set
swept by S during M ;

end7

Mark the corresponding points P h
i on ∂S for each detected fold region;8

of the fold regions, which are not necessarily connected (see also section 3). Constructing the
boundaries of these fold regions can follow any of the established boundary evaluation algorithms
available for point sets or point clouds that will result, for example, in some tessellation (piecewise
linear approximation) or an appropriate polynomial approximation. Furthermore, the inverted
trajectories of those points that are in the boundary of the set swept by the moving S will have
zero intersections and one or more tangencies with S0. It is worth noting that the same sampling
of the plane used to detect the fold regions can be used to generate points that are on the boundary
of sweep(S,M).

The computational cost associated with our approach depends on both the efficiency of the
specific intersection test, as well as on how many times this test is actually performed. Therefore,
an efficient implementation of this algorithm must not only take full advantage of the specific
representation of the solid to make the intersection as efficient as possible, but must also reduce
the number of times the intersection is carried out by performing adaptive sampling strategies
of the plane in which the motion takes place. Standard hierarchical sampling techniques, such as
quadtrees/octrees, and other spatial partitioning techniques [12], as well as other adaptive sampling
methods that may use a combination of seed points in space and spatial partitioning can significantly
reduce the number of points for which intersection is carried out. However, developing specific
sampling techniques, as well as conditions to obtain samples that are “sufficiently dense” are outside
the scope of this paper. At the same time, our approach is inherently parallel, since our tests
are defined pointwise, which implies that parallel algorithms can potentially achieve impressive
speedups, particularly for the cases when the adaptive sampling used is independent of steps 3-6
of the algorithm described above.

3 Examples

In this section we describe several examples that verify our prototype implementation and illustrate
some of the main capabilities of our approach. We implemented the algorithm described above in
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the Parasolid Workshop prototyping tool by UGS using Microsoft Visual Studio .NET.
The first example in Figure 7(a) shows the fold regions generated by a planar non-convex

shape moving according to a planar rigid body motion, and illustrates the inverted trajectories for
representative points from various fold region. In Figure 7(b) we show the computed boundary
points of S that will pass through three distinct fold regions indicated in the figure. The last
example illustrated in Figure 7(c) shows a deformable shape moving according to an affine (non-
rigid) motion and illustrates the computed fold regions. In Figure 8(a) we show an essentially
rectangular shape moving according to a motion composed of a linear translation and a rotation
by π around its geometric center. This example identifies the subset of points of the boundary of
the moving set that move through the identified fold regions. The last example in Figure 8 shows
the effect of considering only the outer boundary of the triangular domain in computing the fold
regions.

In all these examples we employed a simple sampling of the plane along an orthogonal grid,
and used our code that implemented the steps outlined in algorithm 1 to identify the regular,
fold and fold boundary points generated by S during M . As argued above, adaptive sampling
strategies would significantly reduce the number of sampled points, and therefore the number of
curve/boundary intersections performed. In this example implementation, the inverted trajectories
were computed by sampling a dense set of points along each curve and by fitting a cubic B-spline
curve interpolating the set of points.

In the example shown in Figure 7(a), the centroid of the non-convex 2D shape S moves according
to an elliptical trajectory, while the shape rotates uniformly around its centroid by 2π/3. The
prescribed shape and motion generate the disjoint fold regions that are shown in the same figure.
Observe that some of these fold regions are generated by the non-convex subset of the boundary
of S, and that this non-convex subset cannot contact the envelopes for the prescribed motion. In
Figure 7(a), several fold points are chosen to illustrate the intersection of their inverted trajectories
with shape S0 (at t = 0), and they all have an even number of intersections (either 4 or 6 in this
example), but no tangencies, with ∂S.

For the same example, we selected three disjoint fold regions, shown in detail A, B and C of
Figure 7(b), and computed the points of the boundary ∂S of S that will pass through each of
the three fold regions. Intuitively, if these points are not part of the actual boundary of contact
between S and its envelopes, then these fold regions will have no influence on the functional contacts
during M . Our current work focuses on understanding the relationship between these points, the
corresponding fold regions and their influence on the functional contacts.

In the example shown in Figure 7(c), the centroid of disk S translates along trajectory T , while
the disk rotates non-uniformly by 2π/3 around its centroid, and undergoes a non-uniform scaling.
To illustrate the effect of the prescribed scaling, we superimposed a number of configurations of set
S as it moves and deforms according to the affine motion. The set swept by the deformable disk
S contains fold, fold boundary, as well as regular points (in the interior of sweep(S,M)) or points
that are part of the boundary of sweep(S,M).

In the fourth example, the rectangle with rounded corners translates in the x direction along a
linear trajectory T , while the rectangle rotates around its centroid by π. The intermediate positions
were shown in order to illustrate the motion. This solid shape generates three separate fold regions
during the prescribed motion marked as A, B and C. Each of these fold regions corresponds to
different subsets of the boundary of S labeled as ∂SA, ∂SB , and ∂SC that contain points passing
through each one of these fold regions. Again, each of these subsets seems to be responsible for
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specific changes in the local contact condition: for example ∂SC , which is a connected curve, is
clearly related to the loss of contact that happens between ∂SC and the envelope set (when S is
near the vertical configuration in this figure). On the other hand, the influence of ∂SA and ∂SB

on the contact is far less apparent for the parameter interval used to generate the motion. In this
example, the two fold regions A and B “anticipate” the loss of contact outside of t ∈ [0, 1]. We note
that both ∂SA and ∂SB contain disconnected sets of boundary points, and that ∂SC is adjacent to
the boundary of sweep(S,M), while both ∂SA, and ∂SB are completely enclosed in the interior of
the set swept by the moving object.

In the last example, the hollow triangle with round corners S moves according to a planar
rigid body motion that contains a rotation around the triangle’s centroid by π/2. By selecting all
the faces of the triangle (including the hole) as a boundary of contact we obtain the fold regions
illustrated in Figure 8(b). Eliminating the boundary of the hole from the boundary of contact
changes the fold regions as indicated in the same figure.

Instead of performing the inverted trajectory – solid intersections, one could sweep the 2D solid
in the 3D space time domain described in section 2.1.2, for example within a commercial CAD
package. This would provide an approximation of the 3-dimensional surface Σ, which can then
be projected onto the plane of the motion to obtain the fold regions. Note that this projection
would practically introduce a second level of approximation in the result. In general, constructing
Σ in 3D and projecting it onto the plane in any CAD environment would involve fairly significant
approximations particularly for complex planar shapes and motions. These approximations would
translate into geometric errors of the computed fold regions, which are hard to quantify mathe-
matically since they greatly depend on the local properties of the motion and geometry, but are
easily detectable with our approach. Furthermore, these computations are simply not supported
by current CAD technology when Σ exists in a 4-dimensional space (see also section 2.2.1). On
the other hand, our approach does not require envelope computations, and it therefore completely
avoids all such approximations.

4 Conclusions

The mathematical envelopes to families of both rigid and non-rigid moving shapes play a funda-
mental role in a variety of problems from very diverse application domains, from engineering design
and manufacturing to computer graphics and computer assisted surgery. Geometric singularities
in these envelopes are known to induce malfunction or unintended system behavior, and the cor-
responding theoretical and computational difficulties induced by these singularities are not only
massive, but also well documented.

The current techniques to detect these singularities are fairly specialized, and are applicable only
to restricted classes of geometries and motions, while some practical cases have no known solution.
Even when they work, these approaches provide only a binary answer, but are not capable of
quantifying the severity of the corresponding malfunctions. Consequently, the elimination of these
singularities (e.g., via changes in geometry, motion or both) is forced to rely only on the accumulated
engineering experience and heuristics. Clearly, the ability to detect, quantify, and eliminate these
singularities, and hence eliminate the corresponding malfunctions, would be extremely beneficial
to all these application domains.

The contributions of this paper can be summarized as follows.

• We have shown that the problem of detecting and quantifying the geometric singularities in
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the envelopes of moving planar objects can be reframed in terms of fold points and fold regions
in the neighborhood of these geometric singularities. The underlying formalism relies on a
well defined duality between the 2-dimensional Euclidean space in which the motion takes
place and a 2 + 1 spacetime domain. We have argued in section 1 that focusing on planar
problems is practical, since a large number of problems can be abstracted to the 2-dimensional
domain.

• Furthermore, our approach does not require any envelope computations, and reduces to in-
herently parallel tests against the original geometric representation in the 2-dimensional Eu-
clidean space in which the motion takes place. Importantly, this approach relies on a Point
Membership Classification (PMC) test, which provides complete geometric information about
the fold regions (see section 2.2.1). Furthermore, we have shown that our approach can be
implemented within commercial geometric kernels.

• The existence of fold points, by itself, does not imply that total loss of contact will occur
between the moving object and its envelope set, as discussed in section 2.2.2. However, our
formalism specifically identifies the points of ∂S that move through a given fold region of
the space. Establishing a correlation between these points and specific loss of (or changes in)
contacts will provide the subset of ∂S that is responsible for specific changes in the contact
between S and its envelopes, and can further enable systematic geometric changes to the
moving shape S.

• Our decomposition of space into “regular”, “fold”, “fold boundary”, “sweep boundary” and
“exterior” points for a specific object S, and motion M (see section 2.2.2) can be used for
interactive explorations of contact conditions between the moving object and its envelopes. If
no fold region exists for prescribed S and M , then S does not lose contact with its envelopes.
On the other hand, the existence of loss of contact can be established interactively once fold
regions are detected, but the automation of this process requires the formulation of sufficient
conditions, as discussed in section 2.2.2.

• Once the existence of loss of contact is established, one can change either S, M , or a combi-
nation of these, in order to eliminate the envelope singularities. Because our approach does
not only detect, but it also quantifies these fold regions, it sets the stage for the develop-
ment of algorithmic approaches to the elimination of the induced loss of contact and of the
corresponding envelope singularities.

From a practical point of view, our approach provides the first steps towards a generic and
automated technique to detect and quantify the loss of contact between a moving planar generator,
and any object that may come in contact with the generator. In the context of mechanism design
and manufacturing these malfunctions take the form of loss of contact or of violations of prescribed
motions. At the same time, the same concept can be used to detect and quantify malfunctions in a
number of other applications, such as manufacturing path planning, and computer assisted surgery.
In geometric modeling, our approach can be used to formulate new algorithms (or augment existing
ones) for evaluating the boundaries of sweeps, offsets and Minkowski operations as well as novel
and efficient collision detection algorithms.

In order to preserve the generality of our approach, we avoided making restrictive assump-
tions on the geometries and motions that have been considered in this paper. The generality of
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our approach implies that a number of specific issues have not been discussed here, and have to
be addressed separately. Among these issues are set-theoretic and topological properties of the
fold regions, specific representations for motions and trajectories (which in turn influence the effi-
ciency, accuracy and robustness of the associated computations), efficient strategies for sampling
the Euclidean space, as well as a number of application specific issues.

Even though we restricted here the class of problems to those that can be abstracted to the
planar domain, our approach can be generalized to 3-dimensional objects moving according to
general non-periodic and non-singular affine motions. Observe that a 3-dimensional moving shape
will generate a 4-dimensional surface Σ, while the inverted trajectories will be 3-dimensional curves.
In this case, detecting and quantifying the fold points and regions will reduce to 3-dimensional curve-
3D solid intersections similar to those explained in this paper, and these computations can still be
implemented in commercial geometric kernels. However, steps 5 and 6 of algorithm 1, and, in
particular, the neighborhood computations, will have to account for 3-dimensional neighborhoods
as well as degenerate cases that are specific to 3-dimensional problems.
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Figure 7: (a) The fold regions corresponding to a planar non-convex shape S moving according to a
planar rigid body motion and selected inverted trajectories; (b) The points of ∂S that pass through
specified fold regions; (c) a shape moving according to an affine motion involving translation,
rotation and scaling, and the computed fold regions.
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Figure 8: (a) The distinct fold regions for a planar convex shape S are generated by different subsets
of the boundary of contact; (b) Reducing the boundary of contact of S changes the corresponding
fold regions for a hollow triangle with round corners.
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