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Abstract

A large number of geometric representations have been proposed to address the needs of specific engineering applications. This, in
turn, exacerbates the inherent challenges associated with system interoperability for downstream engineering applications.

In this paper, we define the Maximal Disjoint Ball Decomposition (MDBD) as the location of the largest d-dimensional closed
balls recursively placed in the interior of a d-dimensional domain and show that the proposed decomposition can be used to provide an
underlying common analysis framework for geometric models using different representation schemes. Importantly, our decomposition
only relies on the ability of an existing geometric representation to compute distances, which must be supported by any valid geometric
representation scheme, and does not require an explicit representation conversion. Moreover, MDBD is unique for a given domain
up to rigid body transformation, reflection, as well as uniform scaling, and its formulation suggests appealing stability and robustness
properties against small boundary modifications.

Furthermore, we show that MDBD can be used as a universal shape descriptor to perform shape similarity of models coming
from various geometric representation schemes. A salient attribute of this decomposition is that it provides adequate support for key
downstream applications for models coming from disparate geometric representations. For example, MDBD can be naturally used to
carry out meshless solutions to boundary value problems; efficient collision detection; and 3D mesh generation of models that use any
valid geometric representation scheme. Finally, our hierarchical formulation of the proposed Maximal Disjoint Ball Decomposition
allows for a choice of model complexity at run-time to match the available computational resources.

Keywords: geometric representations, shape analysis, system interoperability, shape similarity.

1. Introduction

Numerous geometric representations have been proposed over
the years to address the needs of specific engineering applica-
tions. For example, today’s “gold standard” in CAD is the bound-
ary representation with NURBS curves and surfaces, although
there are other spline versions that are finding some success as
analysis-suitable representations [1]; triangular meshes are the
surface representation of choice in graphics-related applications;
meshes are being used in solving boundary value problems with
Finite Elements [2]; point clouds output by depth cameras are in-
put into mesh reconstruction algorithms [3], which often involves
user interaction - thus geometric processing methods operating
directly on the point clouds have emerged as an alternative pro-
cessing approach [4, 5, 6, 7]; cellular representations, such as
octrees [8], voxels, and meshes [9, 10], are used to speed up or
enable specific solution strategies for a variety of downstream
applications; implicit geometric representations have found their
niche in many applications involving some form of geometric fit,
including fixture design and analysis [11], haptic-assisted assem-
bly [12, 13, 14], and topology optimization [15, 16].

The wealth of geometric representations produced an even
larger stream of algorithms designed to take advantage of specific
representation schemes. On one hand, all current shape analy-
sis frameworks assume a consistent representation of all models
being analyzed, and this assumption requires all representation
conversions to be successfully completed prior to undertaking
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the analysis. On the other hand, converting between existing ge-
ometric representations is far from being a trivial or solved prob-
lem, and every such conversion generates some information loss
that is in general not well understood. It is therefore not sur-
prising that current shape analysis systems have limited ability
to deal with models natively existing in different representations
having different levels of informational content. In fact, the the-
oretical and practical challenges of interoperability prompted the
development of alternative proposals aimed to control the inter-
faces between software systems rather than the format of the ex-
changed data [17].

1.1. Motivating Application Scenarios
The ability to measure the similarity between geometric in-

formation that exists in different geometric representations is es-
sential for similarity search in geometric database systems [18]
containing crowd-sourced geometric models of mechanical com-
ponents. The current state of the art requires multiple represen-
tation conversions prior to measuring similarity with existing al-
gorithms, subject to the limitations discussed above. Further-
more, consider the assembly of large and highly complex sys-
tems encountered, for example, in the context described in [19].
In such a case, the user faces the challenge of determining where
a given component or subsystem needs to be spatially located to
enable its correct assembly. In this context, an Augmented Real-
ity (AR) framework can be used to fuse the information coming
from different geometric representations, such as depth cameras
and CAD systems, to provide correct assembly instructions to
the user. Importantly, the associated computations may have to
be performed on models that natively exist in distinct represen-
tations. The final example scenario presented here is that of the
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traditional structural Finite Element Analysis, which requires ge-
ometric models to be converted to solid meshes in order to solve
the corresponding boundary value problems. However, meshing
continues to be an active area of research and remains a demand-
ing geometric pre-processing step in FEA. To circumvent the
mesh-related challenges, a variety of “meshfree” boundary value
solution methods have been developed, but these operate only
on one specific geometric representation, which are reviewed in
[20].

It is clear that the representations that dominate a specific ap-
plication domain may not adequately support other application
domains without the use of representation conversion.

1.2. Proposed Framework

We aim to formulate a framework capable of unifying the ge-
ometric information that exists in multiple geometric representa-
tions without requiring an explicit representation conversion. To
this end, we observe that the concept of distance is intrinsic to all
valid geometric representations used in 3D geometric modeling,
which suggests that distances should play an important role.

Furthermore, the circle is arguably the most studied shape in
mathematics. For example, circle packings and their complex
(the tangency patterns for circle packings are encoded as abstract
simplicial 2-complexes K) in 2D, have been shown to bridge
combinatorics and geometry [21]; the so-called Ford circles and
spheres [22] reveal the approximation of real numbers by ratio-
nals; and sphere packing [23] is widely used in crystal chemistry.
Our approach presented in this paper is inspired by the extensive
research that has been carried out in the mathematics literature on
circle packings and their complex K. Since our main focus in this
paper is on 3D domains, we rely on a unique spherical decompo-
sition of a domain Ω and on the associated complex K to develop
a framework for shape analysis that can (1) interface with dif-
ferent geometric representations; (2) support geometric reason-
ing and standard geometric algorithms (similarity, segmentation,
proximity/collision queries) and (3) support downstream appli-
cations including analysis and simulations.

Thus, we seek a geometric representation based on ball pack-
ings that is bijective [24], supports the extraction of compact
shape descriptors that are invariant to rigid body transformations,
and provides support for key downstream applications. In what
follows, d-dimensional closed balls, where d = 2, 3, are discs in
2D and spheres in 3D that satisfy y ∈ Ed : d(x, y) ≤ r, where x is
the center and r ∈ R is the radius.

1.3. Background

Geometric Representation Schemes
The standard mathematical model for solids (informally, ob-

jects with boundaries both in 2D and 3D) is an r-set [24], and
there are a variety of syntactically correct computer representa-
tions used to describe such an r-set. Representations schemes
can be complete (i.e., unambiguous, that is, a representation cor-
responds to a single object) and unique (i.e., an object admits
a single representation in the representation scheme), although
some representations are neither. As discussed in [24], represen-
tations that are not complete or unique may still be adequate for
specific applications. However, completeness becomes impor-
tant when the modeling system using the particular representa-
tion scheme supports a wide variety of applications. The unique-
ness of the shape representation implies the uniqueness of the
shape descriptor within a given scheme and is clearly desired in
shape similarity computations [25].

Shape Descriptors
Shape analysis is one of the key tasks in 3D modeling, and the

associated techniques rely on shape descriptors that should be
unique and invariant with respect to rigid body transformations
along with possessing several other important properties [25]. A
detailed review of existing shape descriptors is beyond the scope
of this paper and can be found in [18, 6]. Here we comment
on some of the attributes of the shape descriptors that are rele-
vant to our objective. Importantly, the existing shape descriptors
are defined for specific geometric representations, which implies
that measuring the similarity of objects from distinct representa-
tions requires a conversion. At the same time, computing most
shape descriptors from given representations requires significant
computational resources [18], which could, in turn, impact their
utility for real-time analysis of large data sets.

Various shape descriptors were designed for specific geomet-
ric representation schemes. For example, moments [26, 7] and
spherical harmonics [27] are two global feature-based shape de-
scriptors defined traditionally on voxelized geometric models.
However, since high-order moments are sensitive to noise, only
a small number of low order moments are used in practice, al-
though these low-order moments tend to only capture global fea-
tures of the shapes. Furthermore, the computational cost of mo-
ments increases exponentially with the size of the domain - a
limitation shared by descriptors based on spherical harmonics.

The Heat Kernel Signature (HKS) [28] can capture local char-
acteristics of a mesh or more recently of a point cloud model
[6] and is robust against noise, which makes the HKS particu-
larly appealing for measuring the similarity of point cloud mod-
els. These signatures are based on the heat diffusion properties
of the model, and are stable against boundary noise. One key
observation is that each geometric representation that the HKS
operates on must have an appropriate definition of the discrete
Laplacian, but there are infinitely many ways to define discrete
Laplacians for meshes and point clouds. The fact that each such
definition resu;ts in different convergence properties [29] implies
that HKS-based signatures cannot be directly used to measure
similarity between, say mesh and implicit models.

There are also many graph-based shape descriptors that cap-
ture local features of objects, such as the B-rep graphs [30] and
Reeb graphs [31]. However, the B-rep graphs of similar models
are not guaranteed to be similar [18], and the Reeb graph-based
methods are not applicable to arbitrary shapes.

Spherical Decompositions
Spherical decompositions have been shown to be useful geo-

metric constructions in several different application domains. In
the context of analytic methods, overlapping spherical decom-
positions have been used to construct implicit representations of
3D domains. Specifically, a paradigm for efficient computation
of analytic correlations based on a grid-free decomposition of
potentially overlapping spheres was proposed in [14]. Within
this framework, solids are represented as sublevels sets of sum-
mations of smooth radial kernels. By utilizing nonequispaced
FFTs, one can unify convolution based applications, like holo-
nomic collision constraints, shape complementary metrics, and
morphological operations, within an analytic framework. A re-
cent work investigating the quality of the approximations of a 2D
domain by finite unions of balls has been presented in [32].

In addition, spherical decompositions have been used in mesh-
ing [33], where methods based on circle packings are used to
generate high-quality surface elements for polygonal domains.
In physics simulations, spherical decompositions offer direct

2



support to meshfree analysis methods, such as Method of Fi-
nite Spheres (MFS) [34, 35]. The MFS method, which operates
directly on a decomposition of potentially overlapping spheres,
uses compactly supported functions defined on a spherical cover
of a domain. It has been shown that, even though MFS itself may
is less efficient than the Finite Element Method (FEM) in solv-
ing the discrete system equations, it can overall be more efficient
than FEM because it does not require a mesh of the geometry.

It has also been shown that non-equal spherical decomposi-
tions cover a domain more efficiently than uniform spherical de-
compositions because the former generally need fewer spheres
to cover the domain than the latter [36]. Moreover, sphere in-
ner trees (IST) have been proposed as an alternative data struc-
ture [37] for standard collision detection and proximity queries.
Conceptually, IST are constructed at every level by placing the
maximal sphere in the domain left after carving the volume oc-
cupied by the spheres placed at all previous steps. The focus in
[37] is on keeping the computational cost of collision detection
under control, rather than on a careful definition and investiga-
tion of the properties of the IST or on using IST for downstream
applications. Arguably, the IST presented in [37] is not unique.

In [38], the authors proposed the so-called morphological
shape decomposition applied to decompose a 2D object into a
union of maximal discs. The morphological shape decomposi-
tion proposed in [38] is based on non-uniform circle packing and
Minkowski operations, and is shown to be invariant to transla-
tion, rotation, and scaling. The morphological shape decompo-
sition is similar with ISTs in the sense that it recursively seeks
the maximal inscribable disk in the domain, and uses Minkowski
operations to compute the decomposition as well as the corre-
sponding approximation of the 2D object.

1.4. Contributions and Outline

In this paper, we define a new geometric representation, named
MDBD, based on packing maximal disjoint closed balls inside a
d-dimensional solid domain. We show that this representation is
bijective [24], and that computing MDBD only requires a given
representation to have the ability to compute distances. We fur-
ther explore the mathematical properties of this representation,
and illustrate its potential to shape analysis by establishing uni-
versal shape descriptors that operate directly on the proposed
decomposition, and by using them to measure the similarity of
models that natively exist in various representations. We also
discuss the powerful support that MDBD offers for downstream
applications, including various physical simulations. We note
that MDBD is used in this paper not as a full-fledged geometric
representation, but as a computational framework to unify the ge-
ometric information coming from multiple geometric representa-
tions without requiring an explicit representation conversion.

Observe that MDBD is a fundamentally different concept from
that of the medial axis of the domain. The latter, of course, is the
set of points of a domain that have at least two closest points
on the boundary of the domain [39] or, in other words, the non-
differentiable points of the distance function. On the other hand,
computing MDBD does not require the computation of the me-
dial axis. Instead, it is defined as the locations of the largest
closed balls recursively placed in the interior of the domain. This
difference is explored in more detail in sections 3 and 4.

Section 2 presents the formal definition of MDBD followed
by a careful discussion of its key properties in section 3. Our im-
plementation discussed in 4 is used to generate an ample number
of examples illustrating the decomposition and its application to
shape similarity in section 5. We conclude in section 6 with a

summary of the key contributions and some directions for future
research.

2. Formulation

Our decomposition consists of a collection of carefully placed
non-overlapping d-dimensional balls. For the rest of this paper,
we are focusing on 3D domains, but the discussion applies to 2D
domains as well.

Before we describe the concept formally, let’s define a disjoint
spherical assembly as a set of non-overlapping and closed d-
dimensional balls {b1, b2, ..., bm, ...}, such that ibi∩ib j = ∅, ∀i , j,
where iX is the interior of a set X. In other words, two different
balls in the same disjoint assembly can at most be tangent to
each other. Let Ω be a compact regular semi-analytic subset of
the Euclidean 3-space Ω ∈ P(R3), also known as an r-set [24].
For a given domain Ω, the collection of all spherical assemblies
contained in Ω is denoted byA(Ω).

A disjoint spherical decomposition AΩ of a solid domain Ω
is a disjoint spherical assembly inA(Ω) whose spheres satisfies⋃

i

bi = Ω. (1)

This definition implies that a disjoint spherical decomposition
AΩ of a solid Ω is a complete cover1 of Ω, and that, in general,
AΩ contains infinitely many balls. For 2D domains, the tangency
patterns formed by tangent circles are encoded as abstract simpli-
cial 2-complexes K [21], whereas for 3D domains the tangency
patterns will be encoded as a simplicial 3-complex as discussed
below.

It can be shown that domain Ω is completely described by the
centers of all spheres bi in a disjoint decomposition and by the
associated sphere radii ri, i ∈ N \ {0}. Furthermore, we can order
the radius list r = [r1, r2, r3, ...] and denote such an ordered list
of radii by Ro(AΩ). If i < j we say that ri is at a higher level than
r j in Ro(AΩ).

2.1. Disjoint Spherical Assemblies as Totally Ordered Sets

Assume AΩ, BΩ ∈ A(Ω), and let Ro(AΩ) and Ro(BΩ) be the
corresponding ordered list of radii. Based on the above discus-
sion, Ro(AΩ) and Ro(BΩ) are infinite sequences. If R∞ is the
associated space of infinite sequences, then its dimensionality is
countably infinite. Thus, addition and scalar multiplication are
similar to those found in finite coordinate spaces and a standard
basis consists of vectors ei whose ith element is 1 with all other
elements being 0. The space of infinite sequences, therefore, has
a zero vector 0, which is also an infinite sequence. Furthermore,
such a space has a number of interesting subspaces, such as a
subspace that consists only of sequences that have a finite num-
ber of nonzero elements. Similarly, another subspace, which is
useful in our context, consists of elements that have a finite num-
ber of elements above a given value. Such a subspace allows us
to truncate the disjoint spherical decompositions as discussed in
section 3.3.

We define a total order � onA(Ω), and denote it by (A(Ω),�),
in terms of a lexicographic order of the two lists of radii [40]. The
lexicographic order on R∞ is defined by Ro(AΩ) ≥ Ro(BΩ) if and

1Observe that not all spherical assemblies inA(Ω) provide a cover for Ω.
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Figure 1: Ordering rule

only if one of the two conditions hold:

Ro(AΩ) − Ro(BΩ) = 0 ∈ R∞

∃k ∈ N : Ro(AΩ)i = Ro(BΩ)i for i < k and Ro(AΩ)k > Ro(BΩ)k
(2)

where Ro(X)i is the ith element of the ordered radius list of a set
X.

For spherical decompositions AΩ, BΩ ∈ A(Ω) with their
corresponding radius lists Ro(AΩ) and Ro(BΩ), respectively, if
Ro(AΩ) ≥ Ro(BΩ), we have AΩ � BΩ. Figure 1 shows exam-
ples of this ordering rule. The total order � satisfies the usual
properties of antisymmetry, transitivity and reflexivity as shown
in Appendix A.

2.2. Maximal Disjoint Ball Decomposition

Thus, a disjoint spherical decomposition AΩ of a solid Ω is
maximal if and only if

AΩ � BΩ, ∀BΩ ∈ A(Ω). (3)

We call an assembly MΩ ∈ A(Ω) that satisfies (3) the maximal
disjoint ball decomposition of Ω. It follows that MΩ has the
maximal radius values in its radius list Ro(MΩ) according to the
ordering (2).

2.3. Contact Graph

For a given circle packing of a domain, the tangency patterns
of the circles are encoded as abstract simplicial 2-complexes K,
and K triangulates an oriented topological surface [21]. This sim-
plicial 2-complex K is also known as the contact graph of that
particular circle packing and is always a planar graph. The circle
centers along with the edges connecting the tangent circles of the
packing form a planar embedding of the contact graph. The well
known Koebe-Andreev-Thurston theorem states that the converse
is also true. Specifically, the K-A-T theorem states that every tri-
angulated planar graph G admits a unique circle packing in the
plane whose contact graph is isomorphic to G [41], and its exten-
sion to general Riemann surfaces has been proven. These results
allow one to use uniquely defined circle packings of domains to
study the topology, geometry, and similarity of the corresponding
planar domains.

Similarly, the contact graph of a ball decomposition AΩ of Ω
encodes the tangency pattern of the spheres in AΩ, and we de-
note it by G(AΩ). The set of vertices V(AΩ) in the graph collects
the center locations, while the set of edges E(AΩ) stores the pair-
wise tangencies between spheres in the decomposition. An edge
in E(AΩ) formed by two vertices vi and v j ∈ V(AΩ) is denoted
by vi ∼ v j; this implies that the corresponding spheres in the as-
sembly bi and b j ∈ AΩ are pairwise tangent. Consequently, the
absence of an edge in E(AΩ) connecting vi and v j indicates that
bi ∩ b j = ∅.

Figure 2: Two isomorphic graphs under a rigid body transformation.

Graph homomorphism can be seen as a generalization of graph
colorings [42]. A homomorphism Φ from graph G to graph H is
a map from the vertex set V(G) to the vertex set V(H) that takes
edges to edges. In other words, if vertices u and v of G are con-
nected by an edge, then Φ(u) and Φ(v) will also be connected
by an edge in H. If the homomorphic map Φ : G → H is bi-
jective, and if Φ−1 is a homomorphic map from H to G, that is
Φ−1 : H → G, then G and H are isomorphic.

The contact graph G(MΩ) of the maximal decomposition
MΩ ∈ A(Ω) captures the topology of domain Ω [43]. Hence, we
can use graph analysis tools [44] in order to perform topological
and geometric analysis of the domain. One of the attractive prop-
erties of graph analysis is that graph topology is preserved under
rigid body transformations, reflection, and uniform scaling. For
example, the two contact graphs shown in Figure 2 are isomor-
phic under rigid body transformation. Thus, we conjecture that
two solids Ω1 and Ω2 with isomorphic MDBD graphs and equal
normalized radius lists are congruent up to rigid-body transfor-
mations, reflections and uniform scaling. These observations,
together with the uniqueness properties of MDBD discussed in
the next section, allows us to establish shape descriptors based
on contact graph measures as discussed in section 5.

3. Properties

Following the notation from [24], a representation scheme s is
a relation s : M → R, where M is an abstract modeling space
whose elements are r-sets, and R is the set of all syntactically
correct representations r. The domain of s is denoted by D and
the image of D under s by W. We repeat here three observations
from [24]: (1) any representation r ∈ W is valid, since it is both
syntactically and semantically correct; (2) not all objects in M
are representable through s, i.e. there are elements of M that
are not in D; and (3) syntactically correct representations r in
R may not be valid, i.e., W and R may not be equal. Thus, a
representation r in W is complete (i.e., unambiguous) if the set
s−1(r) is a single element of D and is unique if a given element of
D admits only r as a representation in W. The completeness and
uniqueness of representations extend to representation schemes
if all valid representations are complete and unique.

Representation schemes that are complete and unique are bi-
jective maps and hence are highly desirable, but there are practi-
cal representations that are neither complete nor unique. In fact,
many geometric representations are complete but not unique as
detailed in [24]. However, for the range of applications that are
considered in this work and described in section 1, both com-
pleteness and uniqueness are important.

3.1. Completeness of MDBD
The completeness of MDBD comes straight from its defi-

nition. Given a solid Ω and its corresponding MDBD MΩ :
{b1, b2, ...}, we have ⋃

i

bi = Ω.
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Thus, for a representation r ∈ R, s−1(r) is a single-element set
{Ω} ⊂ D. One direct consequence is that we can use MΩ to
fully reconstruct its original domain Ω. One way to implement
this reconstruction is via morphological operations, as described
in [14]. Given a maximal disjoint ball decomposition MΩ of Ω,
each bi ∈ MΩ could be considered as the translated and scaled
instance of a base shape b0 located at the origin and having a unit
radius. Each 3D ball of MΩ can be obtained from b0 by a process
that takes b0 to a 4D cone followed by slicing the cone to gener-
ate sphere bi with radius ri as described in [14]. Consequently,
Minkowski operations could be used with nonequiradius corre-
lations to reconstruct the solid efficiently, at least in principle.
We observe that in practical implementations one must use trun-
cated versions of the disjoint decompositions, but the details of
how one would go from such a decomposition to a reconstructed
solid are outside the scope of this paper. Here it suffices to say
that this process requires the computation of a cover2 of set Ω.

3.2. Uniqueness
Since our representation scheme s is complete, there is only

one solid Ω ∈ D mapped by s into our maximal disjoint ball de-
composition MΩ ∈ A(Ω). At the same time, the uniqueness of
the maximal decomposition clearly depends on the uniqueness of
the maxima of the distance function of the domain, since some
domains admit multiple, and sometimes infinitely many maxima
of their distance function. Thus, from a computational stand-
point, finding the maximal assembly would require exhaustive
comparisons between all possible decompositions of Ω, which
is clearly impractical. Therefore we distinguish between cases
that have finitely many or infinitely many maxima of the distance
function. The latter case is explored below, and our implemented
strategy is described in 4.2.

To illustrate our approach to handle domains that admit in-
finitely many maxima of the distance function, consider the sim-
ple rectangular domain shown in Figure 3(a), which also shows
for illustrative purposes the medial axis of this rectangular do-
main. Observe that the domain is highly symmetric and that the
segment of the medial axis connecting the two branch points of
the medial axis contains points where the distance function has
the same maximum value. Clearly, one can place a maximal disc
at any one of these infinitely many maxima during the first step
of the decomposition. Figures 3(b-d) illustrate several levels of
the resulting decompositions for three distinct choices of maxi-
mal balls placed at the first level of the decomposition hierarchy,
namely b1, c1, and d1. Even though the ball radii are equal for
b1, c1, and d1, the balls placed at the next level will have smaller
radii for the decomposition shown in Figure 3(b) compared to
those shown in 3(c & d). For this domain, one can easily prove
that the second level maximal balls will be largest if we add either
ball c1 or d1 first. Consequently, according to the MDBD defi-
nition presented in section 2, the resulting decompositions will
have the largest list of radii ordered lexicographically and hence
the two decompositions will be maximal with, in this case, equal
radius lists.

This discussion suggests that, by placing maximal balls at the
branch points of domains that admit infinitely many maxima of
the distance functions, we can obtain multiple MDBDs. How-
ever, a closer inspection reveals that the two contact graphs cor-
responding to Figures 3(c & d) are mirror images of each other
and are, in fact, isomorphic. Since the corresponding radii lists

2A cover of a set X is defined to be a subcollection of sets whose union covers
X [45].

are equal, the two decompositions are actually the same up to
isomorphism.

We therefore conjecture that, given a solid Ω and two dis-
joint spherical decompositions AΩ and BΩ in A(Ω), if Ro(AΩ) =
Ro(BΩ), then their corresponding contact graphs G(AΩ) and
G(BΩ) are isomorphic. In other words, our representation scheme
MDBD is unique up to isomorphism.

The rectangular domain shown in Figure 3 leads to a broadly
applicable insight. Specifically, for a domain that admits in-
finitely many maxima, the branch points of the medial axis favor
maximal decompositions. This observation has practical applica-
bility in finding MDBDs because it limits the search for MDBD
to finitely many decompositions induced by finitely many branch
points, as illustrated in Figure 4.

Another interesting observation is that the number of isomor-
phic maximal decompositions (i.e., decompositions with isomor-
phic contact graphs) seems to be related to the hierarchical sym-
metry of the domain. While a detailed investigation of this as-
pect is outside the scope of this paper, it is meaningful to observe
what happens when we destroy the domain symmetry by adding
a small feature to the domain, as illustrated in Figure 5. During
the first step, maximal balls b1 and c1 are placed at the two branch
points of the medial axis. However, because of the change in the
symmetry of the original rectangular domain caused by the sub-
traction of the small feature, the decomposition shown in Figure
5(c) will quickly emerge as the MDBD of this domain.

3.3. Level of Detail
The proposed decomposition allows for a choice of model

complexity at run-time to match the available computational re-
sources. The balls having larger radii capture the larger geomet-
ric features of the domain, while the smaller balls reveal smaller
features of the domain, as illustrated in Figure 6 as well as in
the examples presented in Section 5. The proposed hierarchical
decomposition together with the lexicographically ordered list of
radii naturally lends itself to establishing ε-approximations of the
domains. This, in turn, could be used in various applications of
engineering interest, such as defeaturing [46] of CAD models in
preparation for analysis. Furthermore, various similarity metrics
can be defined on MDBD, see for example [44], to provide sup-
port for multiscale, global, or local feature matching.

By definition, an MDBD of a domain contains infinitely many
spheres, which supports a theoretically complete reconstruction
of the domain. However, practical algorithms must truncate the
hierarchy of the decomposition, and the small spheres that are
eliminated near the boundary do contain some of the domain’s
geometric information. Consequently, without some a priori
knowledge of the geometry of the domain, a complete recon-
struction from a truncated decomposition may not be possible,
although the level of approximation provided by a truncated de-
composition is quantifiable, at least in principle [47]. However, it
is interesting to observe that polyhedral domains would only re-
quire a relatively small number of balls to perform a complete do-
main reconstruction. These observations suggest that the spher-
ical decompositions could be used under certain assumptions as
compact encoders of geometric information, although this av-
enue of research is outside the scope of this paper.

3.4. Stability
The concepts of MDBD and medial axis are similar in the

sense that they both depend on characteristic points of the dis-
tance function. Specifically, MDBD finds the global maxima of
the distance function of a domain, while the medial axis relies
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Figure 3: (a) A rectangular domain with infinitely many maxima of the distance function. (b) By placing maximal ball b1 first, the next level balls have a smaller radius
than those obtained in (c) and (d); For those cases, the maximal balls c1 and d1 are placed at the branch points of the medial axis, which results into decompositions
with isomorphic contact graphs.

Figure 4: A domain with infinitely many maxima of the distance function is pro-
cessed at this level by adding maximal balls at the branch points of the domain’s
medial axis.

Figure 5: A change in the symmetry of the domain from Figure 4 favors one of
the two isomorphic decompositions. For decompositions shown in (b) and (c),
c1 = b1, and c2 = b2, but c3 > b3.

on its ridges. So, it should not be surprising that their stability
properties are related as well, although there are some significant
differences that we point out next.

Medial axis is notoriously unstable against small boundary
perturbations [39] and it is well known that small changes in the
boundary of the domain induce large changes to the structure of
the medial axis. Its stability properties have been not only stud-
ied, but practical stable alternatives to the “Blum medial axis”
have been proposed. For example, the λ-medial axis has been
proposed in [48] as a subset of the domain’s “Blum medial axis”
that captures the homotopy of the domain as long as λ is smaller
than the “weak feature size” of the domain defined in terms of
the minimum distance between the complement of the domain
Ωc and the critical points of Ω. The authors show that the λ-
medial axis remains stable under small perturbations.

The fact that MDBD depends on the maxima of the distance
function rather than on all of its non-differentiable points has im-
portant implications for the stability of MDBD. Specifically, the
maximal values of the distance function of a domain with mul-
tiple (finitely or infinitely many) maxima are stable with respect
to small boundary perturbations. Figure 7 shows a polygonal
domain for which the effects of boundary perturbations remain
localized. However, the geometry and topology of the set of
the maximal points of the distance function for domains with in-
finitely many maxima can undergo significant changes even for
small boundary perturbations as shown in Figure 8. This is so
because even the smallest change in the boundary could collapse
the infinitely many maxima into finitely many.

The solid modeling literature has dealt with issues raised by
the uncertainty and the limited accuracy of the data. For exam-
ple, instead of assuming that solids have exact (infinitesimally
thin) boundaries, the ε-topological formulation [47, 49] assumes
that the solids have finite size boundaries ε. In this formulation,
the classical set topological notions, like interior i, closure k, and

Figure 6: The MDBD of a square domain with a small triangular feature. (a) The
largest circle accounts for general shape of the solid but cannot capture the small
features that are being captured by balls introduced at subsequent levels of the
hierarchy.

Figure 7: Boundary noise can have local effect on MDBD for domains with
finitely many maxima.

boundary ∂, become the equivalent ε-topological operations that
tolerate imprecision. In turn, this formulation can be used to re-
vise the classical solid modeling framework to include the notion
of ε-solidity. Such notions of ε-boundary and ε-neighborhood,
or, alternatively, other constructs, such as the Skeletal Density
Function (SDF) [13], could be used to redefine versions of our
maximal decomposition that are stable against boundary noise.
Nevertheless, such reformulations are outside the scope of this
paper.

4. Algorithms

4.1. Distance Field Computation
The distance field of a domain is a scalar field whose value

at each point is the shortest distance between the point and the
domain boundary. It is one of the key computational tasks in
geometric modeling and has received significant attention over
the last several decades. A good review of the principal methods
that have been used to compute distance fields is provided in [50].

Traditional standard voxel-based algorithms for unsigned dis-
tance computation have a complexity of O(mn3), where m is the
number of geometric primitive elements (points, segments, and
triangles) constructing the model and n × n × n is the number
of voxels in the space. Rather than computing the distance to
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Figure 8: MDBD of shapes with infinitely many maxima could be sensitive to
boundary noise.

the domain boundary for individual voxels, HAVOC3D [51] cal-
culates the distance field for each primitive element of a solid
with piecewise-linear boundary discretized into parallel slices
and computes the rasterized Voronoi diagram using the OpenGL,
the rendering pipeline, and the depth-buffer. HAVOC3D’s com-
putational complexity is O(mn). Some applications, including
ours, require a signed rather than an unsigned distance field to
distinguish between points that are interior and exterior to the
domain. This distinction can be made by a point membership
classification (PMC) test that outputs in, on and out points and
generally carries a marked computational cost. This is one rea-
son why recent work on distance field computation has focused
on massive parallelization enhancements [52, 53], as well as on
machine learning algorithms [54] to speed up the computations.

Most of the existing algorithms operate only on one specific
geometric representation, which is typically a mesh. However,
in our context, the distance field computations must handle mul-
tiple geometric representations. Consequently, in our prelim-
inary implementation, we traded efficiency for generality and
used HAVOC3D to compute the unsigned distance function, fol-
lowed by a membership test that handles meshes, point clouds,
and CAD geometry, as described below. Note, however, that one
can easily use any other algorithm top compute the signed dis-
tance field (SDF).

In our implementation, HAVOC3D computes the rasterized un-
signed distance function one layer at a time, followed by a PMC
test to label points that are outside of the domain. A relatively
straightforward approach to perform the PMC test is to first vox-
elize the domain, and there are a number of efficient voxelization
methods implemented for objects bounded by surface meshes,
such as [55, 56].

However, our voxelization must handle multiple representa-
tions within the same formulation. This is why we first approxi-
mate the contour of the solid in each slice with a piecewise linear
closed planar curve. For boundary mesh models we intersect
the plane of the slice with the boundary of the solid to obtain
the intersection curve in that plane. For a point cloud model,
each contour is computed by first projecting the boundary points
that are in the neighborhood of the plane of the slice onto the
slice, followed by constructing a piecewise linear approximation
of the planar boundary. Once the contour is computed, we use the
OpenGL tessellator to distinguish between points that are interior
and exterior to the domain. The process of updating the distance
function after adding balls to the decomposition is explained in
Appendix B.

4.2. Shapes With Multiple Maxima
Enumerating and comparing the infinitely many spheres of

the infinitely many spherical decompositions A(Ω) of a set Ω
is clearly impossible. A more practical approach is to iteratively
place the maximal spheres in the domain, and subtract the cor-
responding volume from the domain (see Appendix B) as more
maximal spheres are being added.

Thus, if there are finitely many locations for the maximal
sphere at any given step, and the corresponding maximal spheres
overlap, we explore each resulting branch of the hierarchy and
compare lexicographically the corresponding radius lists as de-
scribed in section 2 up to a preimposed depth of explored levels
DL. If after DL steps the radius lists are equal, we randomly
select one and continue the process. On the other hand, if there
are infinitely many maxima of the distance function at that level
of the hierarchy, we place maximal spheres at the finitely many
branch points as mentioned in section 3. If these spheres overlap,
we explore individual branches as described above; otherwise,
we continue the process until we reach the minimum sphere size.

4.3. Prototype Implementation
We ran our algorithms on meshed and point cloud models to

illustrate the capability to compute MDBD for diverse represen-
tations. Figure 9 illustrates the MDBD of several meshed models
with triangulated boundaries, while Figure 10 shows a compar-
ison of the MDBDs obtained from two different representations
of the same object, namely mesh model and point cloud model.
The point cloud models have been generated by triangle subdivi-
sion. Observe the differences in Figure 10 between the decom-
positions obtained from the two geometric representations: the
former having a continuous boundary, while the latter having a
boundary represented by discrete points. These differences are
due to the differences in the corresponding distance functions,
which converge to a common distance function as the sampling
density of the point cloud increases. However, the similarity of
the resulting MDBDs is not only visually apparent, but it is also
shown computationally, as explained in Section 5.

Figure 9: MDBD of mesh models.

5. Applications

5.1. Universal Shape Descriptors
Since MDBD is invariant to rigid body transformations, its at-

tributes can be used to establish universal shape descriptors based
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Figure 10: Comparing MDBD for mesh and point cloud representations of the
same objects. Left column corresponds to point clouds, while the right column
corresponds to mesh models.

on its radius list and on its associated contact graph. In princi-
ple, the radius list could be directly used as a shape descriptor to
distinguish between different types of shapes.

However, the contact graph, particularly if augmented with
weights based on sphere radii or connectivity information, cap-
tures much more geometric and topological information than the
radius list itself. Consequently, one can build powerful shape de-
scriptors based on these contact graphs. Several advanced deep
learning methods have been developed recently for this purpose,
such as [57, 58, 59], and, in principle, one can use any other
graph-based shape signature in conjunction with MDBD. Never-
theless, in this paper, we aim to show that the maximal disjoint
ball decomposition can be used effectively to establish similarity
between models using distinct geometric representations. Con-
sequently, we describe next a relatively simple similarity metric
based on random walks on graphs [44], which have been widely
used in graph kernels as a measure for graph similarity: short
walks reveal local characteristics of the graphs, while long walks
capture global properties.

Let MΩ ∈ A(Ω) be the maximal disjoint ball decomposition of
a domain Ω and let’s consider the first n spheres of this maximal
decomposition together with the associated ordered list of n radii
rn = {r1, ..., rn}, such that r1 ≥ r2 . . . ≥ rn. Moreover, G(MΩ) =
{V(MΩ), E(MΩ)} is the associated contact graph, and we perform
random walks on G(MΩ).

Let the column vector pt ∈ Rn denote the probability distri-
bution at time t. We denote by pt(vi) the probability of being
at vertex vi at time t, and we assign the initial distribution over
V(MΩ) according to:

p0(vi) =
ri

r1
.

and normalize the values. Let W ∈ Rn × Rn be the weighted
adjacency matrix of G(MΩ). The element wi j of W denotes the
probability to reach vertex vi from v j in one step:

wi j =
1

deg(v j)
,

where deg(v j) is the degree of vertex v j or, equivalently, the num-
ber of incident edges at v j. The diagonal elements wii = 0.

The scores are iteratively redistributed during the random walk
process according to

pt = Wpt−1.

followed by a normalization.

5.2. An Example Similarity Measure

To compare the similarity between two given models, we need
a similarity metric to measure the similarity “distance” between
the two models. We designed a universal similarity metric whose
value relates to the degree of similarity between models so that
the smaller the similarity ”distance,” the higher the geometric
similarity between the two models.

Let Pt
k(Ω), t = {1, . . . ,m} be the score summation over the first

k balls at step t of the random walk process on G(MΩ), which is
defined as

Pt
k(Ω) = λ

k∑
i=1

pt(vi) λ ∈ (0, 1),

where λ is used to decrease the weights of long walks. We
denote the vector of all individual summations by Pm

k (Ω) =

[P1
k(Ω), ..., Pm

k (Ω)].
Thus, we form the feature vector for the similarity metric of

a domain as the combination of its ordered radius list and vec-
tor Pm

k (Ω), which contains information about the random walk
process. Given a maximal decomposition MΩ with n spheres,
a number k < n, and m steps of the random walk process, the
feature vector of domain Ω is defined as

f(Ω) = {[r1, ..., rk],Pm
k (Ω)}. (4)

In practice we only need a relatively small number of spheres
k < n in our feature vector.

Given two solids Ω1 and Ω2, their corresponding feature vec-
tors are defined by equation (4). Thus, we define a similarity
distance as

d(Ω1,Ω2) = ‖Rok(MΩ1 ) − Rok(MΩ2 )‖2 + α‖Pm
k (Ω1) − Pm

k (Ω2)‖2,

where Rok(MΩ) is the ordered list of k radii for the maximal de-
composition MΩ, || · ||2 is the usual `2−norm in Euclidean spaces,
and α is a weight that balances the contributions of the radius list
and contact graph.

We tested this similarity measure on models obtained from the
Shape COSEG Dataset [60, 61, 62]. Figure 11 shows 4 differ-
ent query models, as well as 10 models from each class - some
of which showing only subtle differences with our query mod-
els. Importantly, the database that we used contains two types of
representations, namely meshes and point clouds. In our experi-
ment we selected query models represented as point clouds, and,
for each of the 4 × 10 models, we computed the first n = 500
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Figure 11: The dataset: F corresponds to the four-leg animal, C to candelabra
models, I to iron models, and G to guitar models.

spheres of each model’s maximal disjoint spherical decomposi-
tion. For the feature extraction, we choose k = m = 50, λ = 0.9,
α = 1, and therefore each feature vector has 100 elements.

Figure 12 shows the similarity distances defined above be-
tween each query model and the 40 models from Figure 11.
The smaller the value, the higher the similarity between mod-
els. Next to each graph in Figure 12 we show the models that our
method measured to be the most similar with our query models
from the group of models illustrated in Figure 11. Results do
agree with human intuition, even though the similarity is com-
puted between models having disparate geometric representa-
tions. In other words, even a relatively simple shape similarity
metric based on MDBD, as defined above, correctly captures the
similarity between models having only subtle differences and us-
ing distinct geometric representations.

To explore the stability of the similarity metric against bound-
ary noises, which is tightly linked to the stability of MDBD,
we add random noise of 0.5% and 1% to the four query mod-
els by using the Random Noise Displacement function in Mesh-
Lab. The size of the added random displacement is bounded by a
user-defined value, which is the percentage of the diameter of the
sphere that totally covers the specific model. As we can see from
Figure 13, even though the noise produces changes to the val-
ues of the similarity metric, the general distribution of the metric
across models remains essentially the same, which suggests that
even with this simple metric the MDBD-based similarity compu-
tation is robust in practice against small boundary perturbations.

5.3. Shape Classification

Finally, a two-layer feed-forward network with sigmoid hid-
den neurons and softmax output neurons is trained to perform
shape classification within Matlab’s Neural Net Clustering envi-
ronment.

We use three large sets of 3D models from the Shape COSEG
Dataset as our data for classification, which includes 200 mod-
els of “tele-aliens”, 300 models of “vases,” and 400 models of

Figure 12: Panels (a) contain the point cloud query model; (b) the similarity
distances between the query model and the rest of dataset; and (c) the model
most similar with the query model in each panel (a).

“chairs.” All models are mesh models with triangulated bound-
aries. The 900 samples are randomly divided into 3 groups: 70%
for training, 15% for validation, and 15% for testing. For each 3D
model, an MDBD is computed for the first 800 spheres, which is
then used to extract 130 features as the input to the neural net-
works, including the first 20 radii in the radius lists (n = 20),
the score values of the first 10 (k = 10) vertices in 10 time steps
(m = 10) of random walks. We input into the network: the radii
[r1, . . . , rn], the matrix of vectors pt, t = {1, . . . ,m} of size k × m
, and the m summation vectors Pm

k (Ω) over the first k balls.
Figure 14 shows the confusion matrix of the neural network.

Despite the simple structure of the neural network and of the sig-
nature that has been used, the overall accuracy is 95.4%, which
is comparable to other published results performing shape simi-
larity of geometric models.

5.4. Support for Downstream Applications

The data presented above shows that the proposed maximal
disjoint spherical decomposition can be effectively and success-
fully used for shape analysis across geometric representations.
However, MDBD offers strong support for other key downstream
applications.

Collision detection is at the core of all physics engines in vir-
tual reality environments, and various domain decompositions,
including spherical decompositions, have been commonly em-
ployed to speed up the collision and penetration computations.
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Figure 13: Models with no noise and models with 1% random boundary noise;
The general distribution of the bar charts remains essentially the same.

The truncated MDBD of models using distinct geometric repre-
sentations could be used directly in efficient collision detection
algorithms - for example, in a manner similar to [37]. Further-
more, the hierarchical structure of MDBD is ideally suited for
adjusting the model complexity at run-time based on the avail-
able computational resources in a manner similar to [14].

As mentioned in Section 1, spherical decompositions have
been used in meshing [33, 63] to generate high-quality surface
or volumetric meshes. For example, [33] describes a method
based on circle packing to produce high quality quadrilateral sur-
face elements. Furthermore, the BubbleMesh method proposed
in [63] tightly and carefully packs spheres of equal radii inside
the domain to be meshed followed by a constrained Delaunay tri-
angulation of the sphere centers. One can easily envision design-
ing 2D and 3D adaptive meshing algorithms based on truncated
MDBD coupled with sphere subdivision.

On the other hand, meshing is in general time-consuming
and involves a careful, often manual handling of mesh distor-
tions. Consequently, a variety of meshless/meshfree finite el-
ement methods have been developed over the last 3 decades.
One such method that is particularly promising is the method
of finite spheres (MFS) [2, 35], which operates directly on a
domain discretization with overlapping spheres, and altogether
avoids the meshing generation. In [35] it is argued that despite
the fact that the method of finite spheres is slower than the stan-
dard FEM, overall the computational cost is comparable once
the pre-processing cost of meshing is taken into account. Once
again, one can easily envision algorithms that would convert the
MDBD of a domain into a complete cover of the domain, which
would allow one to perform FEM based on the method of finite
spheres directly on MDBD.

Finally, the larger spheres in MDBD capture large geometric

Figure 14: Confusion matrices: class 1 corresponds to “vases,” class 2 to “tele-
aliens,” and class 3 to “chairs.”

features of the domain as well as its topology, while the smaller
spheres tend to capture the small geometric features. At the same
time, our algorithms end up placing spheres at the branch points
of the medial axis. Consequently, by appropriately truncating
small spheres and “branches” of MDBD, our proposed decom-
position is ideally suited to perform model defeaturing and seg-
mentation, perhaps in conjunction with graph clustering, such as
[64].

6. Conclusions and Future Work

In this paper, we propose the maximal disjoint ball decompo-
sition as an underlying common analysis framework for models
using different geometric representation schemes. We showed
that MDBD is unique up to rigid-body transformations, reflec-
tion, and uniform scaling, as well as complete, so it satisfies the
requirements of a full-fledged geometric representation. Because
MDBD is defined in terms of the maxima of the distance func-
tion of a domain, its stability properties are closely linked with
the stability of the maxima of the distance function, as discussed
in Section 3. We argued in that section that these global maxima
of the distance function are in general more stable to boundary
perturbations than the medial axis itself. Moreover, we argued
that one could in principle use the ε-topological operations to
redefine a version a stable version of MDBD, whose robustness
properties could be proven mathematically. However, our exam-
ples show that MDBD, as defined here, is robust in practice.

One important attribute of MDBD is that it only relies on the
ability of an existing geometric representation to compute dis-
tances, which must be supported by any valid geometric repre-
sentation scheme, and does not require an explicit representation
conversion. This is why MDBD can be used to define universal
shape descriptors to support shape analysis and geometric rea-
soning tasks for models that use distinct geometric representation
schemes, with important practical advantages for shape analysis
as well as downstream applications. To this end, we showed how
even a relatively simple MDBD-based similarity metric can be
effectively and successfully used for shape analysis, and that it is
robust in practice against small boundary perturbations.

We reviewed in section 2.3 some of the known results con-
necting the circle packings of 2D domains with the correspond-
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ing contact graphs. It is worth noting that the Koebe-Andreev-
Thurston theorem applies to any triangulated planar graph, in-
cluding the one produced by our maximal ball decomposition for
a planar domain. However, the mathematical literature lacks an
extension of the K-A-T theorem to 3D or a formal treatment of
the algebraic topological properties of these contact graphs. In-
spired by the known 2D results, our exposition relies on two con-
jectures that we made for both 2D and 3D cases. Even though we
do not currently have a proof for these conjectures, our numerous
computational experiments show that they do hold in practice.

The work presented in this paper could be extended along sev-
eral different directions. First, redefining MDBD by using con-
cepts similar to those proposed in [48] and [47] would address
the stability issues for those domains whose distance function
possesses infinitely many maxima. At the same time, more pow-
erful shape signatures and deep learning methods are bound to
further improve on the already sensible performance exhibited
by the examples presented in this paper. Finally, it would be
worth exploring the support that MDBD offers to downstream
applications as discussed in Section 5.
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Appendix A. Totally ordered set

Let AΩ, BΩ,CΩ be arbitrary elements in A(Ω). We show that
� is a partial order since it satisfies the following three properties
[40]:

1. Reflexivity: AΩ � AΩ

2. Transitivity: If AΩ � BΩ and BΩ � CΩ, then AΩ � CΩ

3. Antisymmetry: If AΩ � BΩ and BΩ � AΩ, then AΩ = BΩ

Reflexivity:
Since Ro(AΩ) = Ro(AΩ), we have AΩ = AΩ, so immediately,

AΩ � AΩ.
Transitivity:

The transitivity property follows directly from the properties
of the lexicographic order described in Section 2. Specifically,
if AΩ � BΩ and BΩ � CΩ, then Ro(AΩ) ≤ Ro(BΩ) ≤ Ro(CΩ) so
Ro(AΩ) ≤ Ro(CΩ), and therefore AΩ � CΩ.
Antisymmetry:

By definition, if AΩ � BΩ then either Ro(AΩ) < Ro(BΩ) or
Ro(AΩ) = Ro(BΩ). On the other hand, if BΩ � AΩ, then either
Ro(BΩ) < Ro(AΩ) or Ro(AΩ) = Ro(BΩ). Since both sets of condi-
tions have to be true, Ro(AΩ) = Ro(BΩ), and, therefore, AΩ = BΩ.

Appendix B. Updating the Distance Function During De-
composition

The signed distance field needs to be updated for every new
sphere being added to the decomposition. Specifically, if S DFΩi

is the signed distance field of a closed regular set Ωi, and S DFb is
the signed distance field of sphere b ∈ Ωi, then the solid obtained
by subtracting sphere b from Ωi is

Ωi+1 = r(Ωi ∩ bc) (B.1)

Figure B.15: Iteratively updating the domain shown in (a) for the first 3 iterations.
Note that we compute the maxima of the signed distance function at each step and
not the medial axis.

where rX is the regularization of a set X [24] and bc is the com-
plement of b. This is illustrated in Figure B.15 where the original
rectangular domain Ω is iteratively updated as maximal spheres
are being introduced at every step. We also show in Figures
B.15(a-d) the ridges of the corresponding distance functions of
the updated domains, although note that we only compute the
maxima of the signed distance function and not the medial axis.

We choose the signs of these functions so that: (a) S DFΩi is
positive in the interior iΩi of Ωi, and negative in the complement
of Ωi; and (b) S DFb is negative in the interior ib of sphere b and
positive outside.

Therefore, the signed distance field of Ωi+1 is

S DFΩi+1 = min(S DFΩi , S DFb) (B.2)

In our implementation of the signed distance function compu-
tation described in section 4.1, we slice the model in its original
representation to compute the rasterized unsigned distance func-
tion, one layer at a time, followed by a PMC test to convert the
unsigned into a signed distance function in each slice. We use
equations (B.1) and (B.2) to update the SDF in each slice during
the iterative decomposition directly in the graphics buffer. How-
ever, one can use any other SDF algorithm to compute S DFΩi as
discussed in Section 4.1.
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