
Taming Connectedness in Machine-Learning-based Topology Optimization with
Connectivity Graphs

Mohammad Mahdi Behzadia, Jiangce Chenb, Horea T. Iliesa

aDepartment of Mechanical Engineering, University of Connecticut,
bDepartment of Mechanical Engineering, Carnegie Mellon University,

Abstract

Despite the remarkable advancements in machine learning (ML) techniques for topology optimization, the predicted solutions often
overlook the necessary structural connectivity required to meet the load-carrying demands of the resulting designs. Consequently,
these predicted solutions exhibit subpar structural performance because disconnected components are unable to bear loads effectively
and significantly compromise the manufacturability of the designs.

In this paper, we propose an approach to enhance the topological accuracy of ML-based topology optimization methods by em-
ploying a predicted dual connectivity graph. We show that the tangency graph of the Maximal Disjoint Ball Decomposition (MDBD),
which accurately captures the topology of the optimal design, can be used in conjunction with a point transformer network to improve
the connectivity of the design predicted by Generative Adversarial Networks and Convolutional Neural Networks. Our experiments
show that the proposed method can significantly improve the connectivity of the final predicted structures. Specifically, in our exper-
iments the error in the number of disconnected components was reduced by a factor of 4 or more without any loss of accuracy. We
demonstrate the flexibility of our approach by presenting examples including various boundary conditions (both seen and unseen),
domain resolutions, and initial design domains. Importantly, our method can seamlessly integrate with other existing deep learning-
based optimization algorithms, utilize training datasets with models using any valid geometric representations, and naturally extend to
three-dimensional applications.

Keywords: Topological Connectivity, Topology Optimization, Maximal Disjoint Ball Decomposition, Point Transformer,
Connectivity Graphs.

1. Introduction

Machine learning techniques have gained momentum in prac-
tically all fields of engineering and science, and topology opti-
mization (TO) is no exception. In fact, a large number of pa-
pers have been published recently and are aimed at reducing the
computational expense associated with gradient-based topology
optimization. These methods effectively generate predictions
that closely resemble the output of optimal structures obtained
through gradient-based optimization, and even exhibit some level
of generalizability in exploring the design space. However, these
predictive methods still face practical challenges. A significant
and common limitation of these methods is their tendency to pro-
duce designs with structural disconnections and other undesir-
able features. Consequently, these suboptimal designs exhibit
weaker structural performance and reduced manufacturability
compared to the optimal solutions predicted by gradient-based
optimization methods [1]. To enhance the quality of predicted
structures, researchers have explored various techniques. Some
approaches involve using extensive training datasets [2] or intro-
ducing physical constraints during the training process [3]. How-
ever, these methods are inefficient and computationally demand-
ing, as generating large amounts of data and performing finite
element analysis are both computationally expensive. We have
previously demonstrated in [4] that by incorporating a topologi-
cal loss function based on persistent homology into the training
process, the number of structural disconnections is reduced by

∗Corresponding author
Email address: horea.ilies@uconn.edu (Horea T. Ilies)

almost a factor of 2. However, this approach requires the explicit
representation of topological features, and existing implementa-
tions of persistent homology metrics [5, 6] are computationally
expensive - see also section 2. Consequently, the training process
becomes time-consuming. Moreover, integrating additional loss
function terms into the model requires frequent tuning of weight
parameters for each new network or dataset, adding an additional
layer of complexity and time investment.

One of the key similarities between almost all of the proposed
learning-based topology optimization algorithms is that, in the
end, they all produce structures represented as binary images in
2D or 3D. While this representation has clear advantages, in-
cluding ease of understanding, straightforward visualization, and
compatibility with powerful image-based ML models and algo-
rithms, it also has several important limitations. For example,
such a representation induces a very large number of variables,
which becomes even more challenging in 3D, requiring large or
very large-scale deep learning networks. Additionally, even a
small number of prediction errors in individual cells (pixels in
2D and voxels in 3D) can result in structural discontinuity (i.e.,
partially connected or disconnected members) within the final
structure.

Intuitively, reducing the number of variables should improve
the quality of the predictions, but there are limited options to do
so for standard image-based representations. While reducing the
resolution intuitively leads to fewer variables, it also results in
a loss of crucial geometric details necessary for predicting vari-
ous real-world structures. In this work, we exploit the properties
of the Maximal Disjoint Ball Decomposition (MDBD) proposed
in [7] to convert a binary image representing a structure into a

Preprint submitted to Elsevier September 25, 2023



Figure 1: The proposed framework. In the initial phase, the structure is trans-
formed into a graph using a combination of ball centers from MDBD and a
branch point detection method to identify additional nodes of the graph. The
edges are determined by connecting the adjacent nodes in the thinned structure.
To further refine the graph, we use the K-Nearest Neighbors (KNN) algorithm to
add additional potential edges. A Point Transformer Network is then trained on
the labeled graphs. In the second stage, the optimal structure is predicted using
boundary conditions and a TO predictor. This structure is then converted into a
graph, where each node is connected to its K nearest neighbors using KNN. The
trained model is then utilized to determine which edges should be retained and
which should be discarded. The final step is to project the new edges onto the
predicted structure and integrate them with the rest of the structure.

graph while maintaining its original topology. Our approach in-
volves connecting each node in the graph to its closest neighbors
and assigning binary labels to the edges. By doing so, we effec-
tively reframe the task of enhancing topological connectivity as
an edge-label classification problem.

2. Background

The high computational cost of gradient-based TO algorithms
prompted the development of a number of machine learning
methods that, once trained, can make predictions almost instan-
taneously. Recently proposed CNN algorithms can predict the
optimal topology for 2D [8, 9, 10, 11] and 3D [12] domains.
However, these algorithms have difficulties in predicting a high-
quality and well-connected optimal structure.

Several recent papers have improved the quality of the gener-
ated structures by adding a large amount of data to their train-
ing process. For instance, the framework developed in [11]
uses 80,000 low-resolution training cases and their correspond-
ing high-resolution data to train and validate their deep learning
model. By using a large amount of data, they have shown good
prediction accuracy in terms of pixel-wise density errors. Their
results were used as a benchmark in [2], where the authors used
296,000 training cases to train their CNN model. By using a
training dataset three times as large as the one in [11], the authors
in [2] reported improved prediction accuracy in terms of pixel-
wise density errors, as expected. However, these approaches re-
quire very large amounts of training data, making it computation-
ally prohibitive to apply them to higher resolution domains due
to the computational expense of generating such large training
sets. Moreover, these methods are unable to control the topo-
logical connectivity of their predictions, resulting in a potentially
large prediction error in terms of design performance.

More complex networks have been proposed to improve the
quality of the predicted structure. For example, generative ad-

versarial networks (GANs) have been used in [13, 14], and the
model developed in [13] has shown some generalizability. How-
ever, these models are often difficult to train, require a large
amount of data, and frequently produce structures with discon-
nected or partially connected members, particularly for boundary
conditions outside the training distribution. In an effort to gen-
erate better structures than those produced by GANs in terms of
manufacturability, the model described in [15] uses a conditional
diffusion model called TopoDiff. It utilizes external guidance
strategies to minimize mechanical compliance and improve man-
ufacturability by employing two neural networks responsible for
predicting the compliance of the structure at different stages of
training, as well as the probability that the topology does not con-
tain ”floating material” or dangling structural members. TopoD-
iff employs a dataset of 30,000 cases to train the diffusion model,
60,000 cases to train the compliance regressor, and 58,000 cases
to train the classifier that predicts the presence of floating mate-
rial. This method could achieve an eight-fold reduction in aver-
age physical performance errors and an eleven-fold reduction in
infeasibility compared to TopologyGAN [13]. Despite demon-
strating better performance than GANs, the proposed model in
[15] uses low-resolution 2D domains (64 × 64) for its training
process, which contains significantly fewer details and thin struc-
tural members compared to the high-resolution domains obtained
from gradient-based optimal solutions or higher resolution ML
predictors. Moreover, using the higher-resolution domains re-
quires more complex neural networks (i.e., more training data)
for the external guidance methods to maintain the same level of
error in predicting compliance and classifying floating material.
On the other hand, the diffusion models are much slower than
GANs in predicting the optimal design, taking 21.59s for TopoD-
iff compared to 0.06s for TopologyGAN. This difference in gen-
erating the design is significant for this domain resolution. For
instance, by using the output of TopologyGAN as an input to a
SIMP solver through several iterations, one can produce a solu-
tion of comparable quality in less than 20s for the same domain
resolution of (64 × 64).

Several papers propose alternative approaches to enhance their
main loss function and achieve improved results, not only in the
field of topology optimization (TO) but also in other domains.
For instance, the method proposed in [3] introduced a feature
pyramid network (FPN) for TO, which trains using loss func-
tions that combine pixel-wise errors and physical constraints. In
their work, the authors proposed a physical loss function that
measures the compliance error between the predicted and ground
truth structures at each step. While their methods exhibited im-
provements over their baseline model, the necessity to perform fi-
nite element analysis during every loss function calculation made
the process time-consuming. This can be one of the reasons why
they conducted experiments using only low-resolution structures
(64×32) in their experiment. In our own research [4], we adopted
a topology-aware loss function in conjunction with binary cross-
entropy to explicitly incorporate the topological information of
the predicted and ground truth structures into the training pro-
cess. By introducing the topological loss function, we achieved
nearly a twofold improvement in the connectivity of the gener-
ated structures. However, our loss function included terms based
on persistent homology, which proved to be computationally in-
tensive to compute. Similar modifications to loss functions, in-
corporating topology-aware terms, have been explored in other
domains, as demonstrated in [16]. It is important to note that
adding supplementary term(s) to the main loss function neces-
sitates tuning the weight of the new loss, thereby increasing the
computational cost of training. Moreover, these additional terms

2



cannot be directly applied to the output of other deep learning
models unless those models are trained using the same loss func-
tions.

3. Contributions

In this work, we leverage the properties of Maximal Disjoint
Ball Decomposition (MDBD) [7] to convert the structure repre-
sented as a binary image into a graph that preserves the topology
of the domain. We then demonstrate that by connecting each
node in the graph to its nearest neighbors and by assigning a bi-
nary label to each edge, we can effectively transform the problem
of improving topological connectivity into an edge label classi-
fication problem. This approach allows us to use a point trans-
former [17] network, which is a type of neural network that has
shown strong performance in relevant geometric learning tasks,
such as learning the topological features of the graph and graph
edge labeling. Specifically, in this paper, we utilize this trained
model to predict the missing edges in the graph obtained from
the structure predicted by any deep learning model. By project-
ing the added edges onto the predicted structure, we can effec-
tively connect disconnected members of the prediction made by
the deep-learning model. Figure 1 illustrates the key steps of the
proposed framework. Our results indicate that our method can
significantly reduce the error in the 0th Betti number 1 without
compromising accuracy, and in our experiments the error in the
0th Betti number was reduced by a factor larger than 4.

To the best of our knowledge, this is the first attempt to use
graphs preserving the homotopy type of the domain to enhance
the connectivity of the structures. Moreover, our method repre-
sents a promising step forward in improving the connectivity of
the TO predictions made by machine learning algorithms using
the image-based representation.

4. Method

The proposed framework is depicted in Figure 1, which shows
how to transform the problem of improving the connectivity of
the predicted optimal topology into a graph-based edge classifi-
cation problem. Importantly, the method can augment any other
deep learning prediction model for TO. Moreover, it can be used,
in principle, with any of the well-known curve skeletons - a con-
cept extensively studied [19, 20, 21, 22]. However, in this work,
we employed the graph obtained from the MDBD spherical dis-
joint decomposition due to its theoretical topological correctness
and its representation-agnostic definition in terms of distances.
The latter attribute allows us to compute the MDBD decompo-
sition for any valid geometric representation, including cellular
decompositions. In the following section, we provide a detailed
explanation of each stage of the proposed framework.

4.1. Binary Image to Graph
MDBD is defined as a recursive placement of maximal balls

that fit inside a given domain [7]. Observe that connecting the
centers of the MDBD balls that have at least 2 tangency points
with the domain boundary can yield a graph that is homotopy
equivalent with the domain2, as shown in figure 2. The MDBD

1The kth Betti number captures the number of k-dimensional holes on a topo-
logical surface [18].

2This leverages the fact that the balls with 2 or more tangency points with the
domain boundary are centered, by definition, on the medial axis [7].

Figure 2: Connecting the centers of the disks that have more than one tangency
with the domain boundary results in a graph that has the same homotopy type as
the domain.

implementation used in this work prioritized efficiency over ac-
curacy, and, as a result, our MDBD implementation does not
compute tangency information for the balls, which is outside
of the scope of this manuscript. Instead, to compute the graph
nodes, we utilize here a truncated version of MDBD combined
with a morphological thinning algorithm to determine the addi-
tional nodes required for the graph. Furthermore, edges are es-
tablished by connecting the nearest neighbor nodes in the aug-
mented thinned structure. This methodology is explained in
greater detail in the following section.

4.1.1. Maximal Disjoint Ball Decomposition (MDBD)
The Maximal Disjoint Ball Decomposition (MDBD) [7] is a

recently proposed geometric representation scheme that can be
thought of as a recursive placement of the largest closed balls
within a domain. This decomposition comprises a collection
of non-overlapping d-dimensional balls, where d is the dimen-
sion of the space for the given domain. MDBD has a multi-
tude of applications in shape similarity, processing, and analysis.
This work relies on the facts that MDBD: (1) is representation-
agnostic for the given domain; (2) places no restrictions on the
complexity of the solid 2D or 3D shape being analyzed; (3) pro-
duces a connectivity graph that captures the topology of the do-
main; and (4) provides an intrinsic and compact parameterization
of the optimal solution output by TO algorithms in terms of a col-
lection of ball centers and their radii.

Hence, we used a truncated MDBD to identify potential nodes
for the graph representation of the ground truth structures, as
illustrated in Figures 3(a) and (b). Given that our MDBD im-
plementation does not calculate the tangency points between the
maximal balls and the boundary, as explained earlier, we select
an MDBD truncation level that matches the size of the smallest
feature of interest in the domain. For the examples investigated
in this work, retaining approximately 20% of the total number
of balls effectively captures the smallest features present in the
structures, as demonstrated in Figure 3(c). We then apply mor-
phological thinning [23, 24] to the structure and use it to gener-
ate candidate edges in the graph. The black pixels in Figure 3(d)
depict the thinned structure. Next, we compute the minimum
distance from the center of the balls to the thinned structure and
project the centers having a minimum distance of less than 5 pix-
els onto the thinned structure, as depicted in Figure 3(e). Note
that, in principle, steps 2-4 can be eliminated by computing the
ball-boundary tangency information for all the balls and retain-
ing only the balls that have at least 2 points of tangency with
the domain boundary, as described above. In this case, a correct
graph could be constructed by simply connecting the centers of
these balls that are mutually tangent.

This process generates candidate nodes for the graph. How-
ever, this set of nodes would result in an incorrect graph if we
assume that every node is connected to its immediate neigh-
bors on the thinned structure, as shown in Figure 3(g). Thus,

3



Figure 3: The step-by-step procedure to convert the structure to the graph. (a) shows the optimum structure, (b) is the output of the MDBD for the structure, (c) shows
the remaining disks after removing the small ones, (d) shows the thinned structure with the disks, (e) shows the projected disk centers on the thinned structure, (f) shows
the projected centers with corners and the endpoints, (g) the graph created by the projected centers alone, (h) the graph created by the corners and endpoints alone, (i)
final graph created by combining the projected centers with corners and endpoints.

we have to add additional nodes to the graph such that the con-
nected graph would have the same homotopy characteristics as
that of the structure. The computation of these branch points is
discussed next.

4.1.2. Branch and End Point Detection

Figure 4: An example of the kernel used to detect branch points and end points
of the thinned structure. (a) is the 3 × 3 kernel, while (b) and (c) are examples of
branch and end points, respectively.

The additional graph nodes consist of branch points, i.e., pix-
els of the thinned structure that are connected to three or four
other pixels of the structure, and end points, which are defined
as pixels of the thinned structure that are connected to only one
other pixel of the structure. These branch and end points were ob-
tained by moving a 3×3 kernel over a thinned structure to identify

points where the middle element of the kernel is 1, and the sum
of the elements in the kernel is greater than 3 for branch points
or equal to 2 for endpoints. Figure 4 illustrates the kernel corre-
sponding to a branch point and an end point. Given the kernel
in Figure 4(a), if the middle element is 1, along with three other
elements of the kernel as shown in Figure 4(b), then the point
on the thinned structure is considered a branch point. Addition-
ally, if the kernel contains only one additional non-zero element
besides the middle element, as illustrated in Figure 4(c), then
the corresponding point on the thinned structure is an end point.
By adding the branch points and end points to the list of graph
nodes described above (Figure 3(f)), we can create the graph. It
is important to note that using only the branch points and end
points, without the graph nodes produced by MDBD, would not
yield a graph that is homotopy equivalent with the domain. As
shown in Figure 3(h), using branch points and end points alone
creates a graph that misplaces the topological features and fails
to identify the gaps between two adjacent neighbors. However,
by combining these two methods, we can convert our structures
into graphs that are homotopy equivalent with the structures, as
shown in Figure 3(i). Algorithm 1 presents the pseudocode for
our procedure to generate a graph from an image containing the
optimal topology.

Observe that MDBD itself captures the topological informa-
tion of the structure. Moreover, by connecting the centers of the
circles that have two or more tangency points with the boundary
of the domain, we generate a graph that is homeomorphic with
the medial axis, which in turn is homotopy equivalent with the

4



Algorithm 1 Image to Graph algorithm

1: procedure imgtograph(img)
2: disks←MDBD(img)
3: disks←Remove Smalldisks(disks)
4: thinned ←Morphological Thinning(img)
5: min dists←Distance to Thinned(thinned,disks)
6: nodes←Project(thinned,disks,min dists)
7: nodes←Corner Endpoints(thinned)+nodes
8: edges←Find Edges(nodes,thinned)
9: graph←Create Graph(nodes,edges)

10: return graph
11: end procedure

structure, as depicted in Figure 2. This is so because these cen-
ters will lie, by definition, on the medial axis of the domain, and
the properties of the medial axis are well documented – see, for
example, [25, 26], including its homotopy equivalence3 with the
domain. However, in the current implementation of the MDBD
algorithm, we do not compute the tangency information between
the circles and the boundary. Thus, we chose to employ image
processing algorithms using morphological operations to gener-
ate the end points and branch points of the skeletons. Our algo-
rithm represents a practical approach for converting binary im-
ages into graphs with correct topology. We verified our algorithm
on complex 2D domains, including the one illustrated in Figure
5, which is homeomorphic to a 2D disk.

It is worth mentioning that the connectivity graph of an un-
truncated MDBD for a 2D domain is a 2-complex, as detailed in
[7]. However, the graph obtained by connecting the centers of
the 2D balls that have 2 or more tangencies with the boundary,
whose centers are by definition on the medial axis, is not formed
by collections of 2-simplices whose underlying space is part of
the given domain. Instead, for such a 2D domain the resulting
graph is a curve skeleton that is a simplicial 1-complex, i.e., col-
lection of 1-simplices, as visually depicted in Figures 2 and 5. A
good summary of the concepts from algebraic topology related
to simplicial complexes can be found in [27].

4.2. Edge Classification with the Point Transformer

The main idea behind this work is to transform the connec-
tivity problem into an edge-label classification problem. In do-
ing so, we identify the missing edges in the graph corresponding
to the predicted structure. Subsequently, by projecting the new
edges onto the predicted structure, we connect the disconnected
members to the main body of the structure. After converting the
predicted structure into a graph, we connect each node to its 5
nearest neighbors and request the network to classify each edge.
The edges labeled with 0 are removed from the main graph.

To create a dataset suitable for training the model, we connect
each node in the ground truth graph to its 5 nearest neighbors and
assign a label to each edge. The edges that exist in the ground
truth graph are labeled with 1, while the edges that do not exist
in the ground truth graph are labeled with 0. Figure 6 illustrates
an example of this process. The nodes in the ground truth graph,
as shown in figure 6(a), are connected to their 5 nearest neigh-
bors, resulting in the graph depicted in figure 6(b). Finally, by

3Note that in [26] it is proven that any bounded open subset in Rn has the
same homotopy type as its medial axis. Consequently, the open set defined by
the optimal topology and its medial axis have the same homotopy type.

assigning labels to each edge, we obtain the graph shown in 6(c),
where the red edges have a label of 1 and the blue edges have a
label of 0.

We developed a model based on the point transformer [17] to
classify the edges. The network architecture is shown in figure
7, and the model consists of 6 point transformer convolutional
layers, where each layer updates the node features according to:

x
′

i =
∑

j∈N(i)∪{i}

αi, j(W3x j + δi j) (1)

where the attention coefficient αi, j and the positional embedding
δi j are computed as:

αi, j = softmax(γθ(W1xi −W2x j + δi j)) (2)

and
δi j = hθ(Pi − P j). (3)

Here, x
′

i is the updated feature for node i, xi and x j are the feature
vectors for node i and j, Ws are learnable weights, γθ and hθ are
the neural networks, and Pi and P j are the position of node i and
j, respectively.

The inputs to the model consist of the node features, which
are the normalized coordinates of each node, the adjacency ma-
trix, and the location of the nodes in the domain required for the
message passing. The linear layer processes the node features
before they are input to the point transformer layer. After each
point transformer layer, there are ReLU activation and dropout
layers to mitigate overfitting, except for the final point trans-
former layer. The output of the final point transformer layer is
then passed through a normalization layer, from which the edge
features are derived by calculating the average of the correspond-
ing node features. These edge features are then input into a clas-
sifier to determine the label of each edge. The dataset we used for
our experiment contains 2, 250 binary images of size 120 × 240,
which were previously used as training data in [4, 29]. The seen
and unseen boundary conditions used for the train and test sets
are defined in [4]. Before converting the structures to graphs, the
data was augmented by mirroring and rotating by 180 degrees to
artificially increase the size of the dataset. We trained our model
for 150 epochs on a PC equipped with an Intel Core i7-10750H
CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 2070 Su-
per GPU, and implemented early stopping to prevent overfitting
and select the model with the best performance. The changes in
the loss function at each epoch during training are depicted in
Figure 8. It is worth mentioning that the training process lasted
approximately 22 hours on a PC equipped with the aforemen-
tioned specifications.

The trained point transformer was then used to predict the
missing edges in the graph corresponding to the predicted struc-
tures. Then the missing edges were projected onto the structure
as a line segment with a thickness of 2 px.

4.3. Evaluation Metrics
We use several different evaluation metrics, including the

pixel-wise accuracy, defined as the percentage of correctly classi-
fied pixels, and the Betti number error, which directly compares
the topology (e.g., number of handles) between the prediction
and the ground truth. We calculate the 0th Betti number by count-
ing the number of components in the image and 1st Betti number
by counting the number of holes in the structure. The Betti num-
ber error was obtained according to:

ithBetti error =
Bi(p) − Bi(g)

Bi(g)
(4)

5



Figure 5: A complex and connected domain without holes, i.e., homeomorphic to a disc, from [28]. (a) shows the original image and (b) displays the graph produced
by our algorithm.

Figure 6: Creating the training dataset. (a) is the ground truth graph, (b) the ground truth graph after connecting each node to its 5 nearest neighbors, (c) shows the
labeled graph where the edges with label 1 are shown in red and the label 0 are shown in blue.

where Bi is the ith Betti number, p is short for predicted structure
and g stands for ground truth.

Two other metrics that we used to measure the performance
of the proposed method are the Compliance Error (CE) and the
Volume Fraction Error (VFE). The compliance error can be cal-
culated from:

CE =
|C(p) −C(g)|

C(g)
(5)

where C(p) and C(g) are the compliance of the predicted and the
ground truth structure, respectively. Similarly, VFE is obtained
from:

VF error =
|VF(p) − VF(g)|

VF(g)
(6)

where VF(p) and VF(g) are the volume fraction of the prediction
and the ground truth, respectively.

5. Results and Discussion

5.1. Overall Results

We defined four testing scenarios to evaluate the performance
of the proposed approach in improving the connectivity of the
predictions. We used the predicted structure by GANTL [4] and
the CNN proposed in [29] at two different resolutions: 120×240
and 200 × 400. We considered both seen and unseen bound-
ary conditions (BC) and different initial domains, namely the L-
shape, curved beam, L-shape with a hole, and frame. Figures 9
and 10 show a side-by-side comparison of the original prediction
by the TO predictor and the processed structure using our model
for all scenarios. The corresponding evaluation data, captured by

the performance metrics described in section 4.3, are collected in
Table 1.

The performance data shows that our method can improve the
connectivity of the predicted structures using two different TO
predictors with different resolutions, boundary conditions, and
initial domains. Specifically, for the 1st scenario (120 × 240 do-
mains with seen BCs shown in Figure 9a), our method could re-
duce the 0th Betti error by a factor of 4. However, the error in
the number of holes increased from 15.3% to 18.4%, which was
predictable. The reasons may be that closing open loops by con-
necting them to the main body may add additional holes to the
structure, coupled with the fact that our method, as formulated,
cannot create new or destroy existing holes in the main body.
Our method has also reduced the compliance error from 4.90% to
3.8%, thus improving the performance of the structure. This im-
provement indicates that connecting the disconnected members
to the main body can enhance the structure’s performance. Fi-
nally, as expected, connecting the disconnected or partially con-
nected components to the main body adds additional material to
the domain, leading to an increase in the volume fraction error.
However, in our experiments, adding the additional material cov-
ered areas that were eliminated in the predicted structure, which
we suspect may be the reason why the accuracy remained practi-
cally unchanged.

For the 2nd scenario (L-shape, curved beam, L-shape with
hole, and frame) with a resolution of 120× 240 shown in Figures
9b, 9c, and 9d), the proposed method reduced the 0th Betti error
of the predicted structure by [29] from 73.93% to 28.4%. The
structures predicted by the CNN from [29] could not accurately
depict the holes, so our method reduced the error in the number of
holes by almost 11%. Correcting the topology of these predicted

6



Figure 7: Architecture of the edge labeling network.

Table 1: The qualitative comparison between the predicted structure by the TO predictor and the processed structures using the proposed algorithm for the test datasets
in fig. 9. The last row in the table shows the initial domain of the structure in each scenario.

Metrics 1st scenario (Figure 9a) 2nd scenario (Figures 9b-9d) 3rd scenario (Figure 10a) 4th scenario (Figure 10b)
Prediction Processed Prediction Processed Prediction Processed Prediction Processed

0th Betti error 42.0 % 8.5 % 73.93 % 28.4 % 190.1 % 45.7 % 530.0 % 141.3 %
1st Betti error 15.3 % 18.4 % 35.5 % 24.6 % 20.6 % 27.4 % 116.2 % 152.9 %
Compliance Error 4.90 % 3.8 % 9.8 % 6.2 % 4.40 % 4.0 % 7.92 % 7.20 %
Volume Fraction Error 0.03 % 0.30 % 0.53 % 0.71 % 0.16 % 0.43 % 0.53 % 1.08 %
Accuracy 96.40 % 96.31 % 95.06 % 94.9 % 96.10 % 96.50 % 88.44 % 88.31 %

Initial Design Domain

Figure 8: The training and the test loss values in each epoch.

structures reduced the compliance error from 9.8% to 6.2%. The
volume fraction error and accuracy followed the same pattern as
in the 1st scenario. It is worth noting that the point transformer
is trained on the graphs obtained from 120 × 240 structures op-
timized from a rectangular domain. The results of this scenario
indicate that our method can improve the connectivity of the pre-
dicted structures with different initial domains.

The next two scenarios are designed to demonstrate that our

model can perform in domains with different resolutions and un-
seen boundary conditions, which were not present in the training
data used for the point transformer. It is important to note that
all training data used to create graphs for the point transformer
are sourced from domains with a resolution of 120× 240. Figure
10 showcases examples for these two scenarios, and their perfor-
mance metrics are summarized in Table 1. In the 3rd scenario,
the predictions processed by our method exhibit fewer discon-
nected members (by a factor higher than 4), improved structural
performance, and slightly better accuracy. However, these pro-
cessed structures also display a higher volume fraction error and
1st Betti error, as explained earlier. In the last scenario, the pro-
cessed structures exhibit significantly fewer disconnected mem-
bers compared to the original predictions, specifically a 0th Betti
error of 141.3% versus 530.0%. Following the same pattern as
that displayed in the first three scenarios, the processed struc-
ture in the last scenario demonstrates a higher 1st Betti error and
volume fraction error, while slightly lower accuracy. The results
obtained from these two scenarios demonstrate that the proposed
method produces promising outcomes for domains with different
resolutions and unseen boundary conditions, even without fur-
ther training. This demonstrates the generalizability potential of
the framework.

5.2. Time Complexity
Table 2 depicts the per-case time consumption of each oper-

ation when executed on a PC equipped with an Intel Core i7-
10750H CPU, 32 GB of RAM, and an NVIDIA GeForce RTX
2070 Super GPU. It is evident from the table that the duration

7



(a) (b)

(c) (d)

Figure 9: Comparison between the ground truth (SIMP optimized) 2D structures, predicted structures by a TO predictor, and the improved connectivity produced by our
method for the 1st and 2nd scenarios. Fig. (a) shows the results of our method applied on the output of the GANTL [4] for domains with the resolution of 120× 240 and
seen BCs with respect to the training data used to train the point transformer. Figs. (b-d) shows the results of our approach applied to the output of the CNN proposed
in [29] for the L-shape, the curved beam, the L-shape with hole, and the frame. The individual quality metrics for our predictions are presented in Table 1.

8



(a) (b)

Figure 10: Comparison between the ground truth (SIMP optimized) 2D structures, predicted structures by GANTL [4], and the improved connectivity produced by
our method for the 3rd and 4th scenarios. Figs (a-b) show the output of our method applied on the domains with the resolution of 200 × 400 with seen and unseen BC
presented in [4]. The individual quality metrics for our predictions are presented in Table 1.

Table 2: The time required for each operation per case (second/case).

Domain resolution MDBD Img2Graph Edge Prediction Edge projection Total time
120 x 240 0.8 2.3 0.043 0.0024 2.345
200 x 400 1.9 5.1 0.05 0.003 5.153

of the implemented MDBD process and, consequently, the con-
version of the structure to a graph, varies significantly with the
domain resolution. Once the transformation is complete, the re-
maining operations only require about 0.05 seconds to generate
the processed structure. Also, note that an MDBD implemen-
tation that computes the ball tangency with the boundary of the
optimal structure could reduce the total time by eliminating the
need to compute the thinned structure and the branch and end
points.

5.3. Ablation Study

We evaluated the impact of varying the number of nearest
neighbors (K) and of the edge thickness on the predicted struc-
ture. Experiments were conducted using K = 3, K = 5, and
K = 7, and edge thicknesses of 1 px, 2 px, and 4 px, respec-
tively, representing the edges missing from the graph (labeled as
1). The results in section 5.1 are based on K = 5 and an edge
thickness of 2 px. As shown in figure 11a, increasing K from 3
to 7 reduces the 0th Betti error but increases the 1st Betti error and
the volume fraction error. This is because the model can predict
more connections and create more holes in the domain, leading
to a higher 1st Betti error and volume fraction error. The overall
performance of structures generated with K = 3 and K = 5 is
similar, with K = 3 having a slightly higher 0th Betti error but a
lower 1st Betti error. However, K = 7 results in poorer structural
performance compared to the original prediction, demonstrating
the importance of the careful selection of K. The model achieves
the best volume fraction results with K = 5, indicating that it
finds better connections (and therefore adds less material) with
this setting.

The evaluation metrics for structures processed with varying
edge thicknesses are presented in Figure 11b. In this experiment,
the thickness of the projected edges was assumed to be constant,
although one can use different edge thicknesses, for example, by
correlating the edge thickness to its length. As indicated in the
figure, using thicker line segments to project missing edges re-
sults in a smaller 0th Betti error, but an increase in the volume
fraction error due to the added material in the domain. However,
no clear correlation was observed between edge thickness and
the 1st Betti error or compliance error. Specifically, the 1st Betti
error is lower when the edge thickness is 4 px rather than 2 px,
but the 1st Betti error of the 2 px edge is higher than that of the
1 px edge. This suggests that thicker edges may fill some of the
holes in the structure and result in a reduced 1st Betti error. Addi-
tionally, comparing the compliance error for different thicknesses
reveals that a higher edge thickness does not necessarily improve
structural performance. In our experiments, an edge thickness of
2 px led to a better structure, and we expect that varying the edge
thickness would further improve the results.

6. Conclusions

We have proposed a versatile technique to improve the con-
nectivity of machine learning-based topology optimization algo-
rithms. This technique leverages the graph skeleton derived from
the Maximal Disjoint Ball Decomposition (MDBD) of the struc-
ture and a point transformer to enhance the structural connectiv-
ity and, hence, the manufacturability of the structure predicted
by any deep learning model. The training data used in the point
transformer consists of 2, 250 graphs obtained from structures
with a resolution of 120 × 240. We demonstrate that the trained
model can connect disconnected or partially connected members
in domains with different resolutions, for both seen and unseen
boundary conditions, and different initial domains and topologies
(e.g., curved beam, L-shaped beam, L-shaped beam with a hole,
and frame) predicted by any deep learning model. Specifically,

9



(a) (b)

Figure 11: Ablation study. Figure (a) shows the effect of choosing the number of nearest neighbors in the graph on the processed structure. Figure (b) shows the results
of projecting the missing edges in the structure with different thicknesses.

we validate the effectiveness of our technique on structures with
resolutions of 120 × 240 and 200 × 400, subjected to both seen
and unseen boundary conditions, and with solutions predicted by
a GAN network [4] or a CNN model [29]. Our results demon-
strate that the proposed method can improve the connectivity of
the structures by a factor of 4 and create design solutions with
better structural performance.

One of the key advantages of our proposed method, compared
to methods based on modified topological loss functions, is that
our method can be applied to structures with different resolutions
and boundary conditions without requiring additional training. In
contrast, methods based on topological loss functions necessitate
separate model training for different resolutions. Moreover, the
weight of the topological loss function in such a training process
needs to be tuned for every model, resulting in increased compu-
tational costs that highly depend on the domain resolution. Addi-
tionally, the proposed method can be applied to solutions output
by any other deep learning model to improve the connectivity of
the predicted solution.

Importantly, graphs need fewer variables than the correspond-
ing images by a factor of at least 102 for a 120×240 image resolu-
tion, and this factor increases exponentially with the domain res-
olution as well as the dimension of the underlying space. Hence,
the proposed edge labeling network is not only much easier to
train than the accompanying image prediction network, but in
principle it also relaxes the performance requirements demanded
from the image prediction network, thus allowing a potentially
significant reduction in the size of the corresponding training
dataset.

One of the limitations evidenced by our experiments is that
the method may create holes that do not exist in the ground truth
and may create members that would be unable to carry loads.
This limitation arises from the current formulation of the method,
which fails to eliminate undesired members and instead connects
them to the main structure. To overcome this constraint, one
potential solution could involve integrating the proposed point
transformer into a loss function of the TO predictor during train-
ing. This integration would allow us to consider not only the
pixels that need to be added but also those that need to be re-
moved. However, it is important to note that incorporating the
model into a loss function is likely to increase the computational
cost of the training process, as discussed earlier.

Moreover, it is conceivable that one could construct a graph
generative model [30] to generate the graph describing the opti-
mal structure while also predicting the thickness of the structure
at various locations as node labels. Simultaneously, augmenting
the proposed method with the ability to not only add but also
remove material could lead to improvements in the manufactura-
bility of the resulting structures. This is because thin, dangling,
or disconnected members, as well as small voids, could be elim-
inated or reconnected to the main structure as needed. Such an
extension could leverage the compact parametrization induced
by MDBD and its tangency graph.

To the best of our knowledge, this is the first attempt to de-
vise models that enhance the connectivity of the optimal struc-
tures generated by machine learning-based TO predictors by us-
ing connectivity graphs that have the same homotopy type as that
of the domain. Our experiments suggest that utilizing this type
of graph produces superior predictions of the optimal structural
designs, resulting in structures that have better performance due
to a higher load-carrying capacity induced by the improved con-
nectivity. In turn, this work opens up new avenues for future re-
search and applications in the field of TO, as well as in other areas
where the topological connectivity of network-like structures is
important, such as the segmentation of roads, blood vessels, and
neurons from images. Importantly, the fact that the construction
of MDBD requires only distance computations in both 2D and
3D implies that our method can use training datasets with mod-
els using any valid geometric representation, including cellular
decompositions, and naturally generalizes to 3D.

Acknowledgements

The authors acknowledge the support from the National Sci-
ence Foundation grants CMMI-2232612, CMMI-2312175, and
the Office of Naval Research/NIUVT. The authors would like to
thank the anonymous reviewers for their constructive feedback.
The responsibility for any errors and omissions lies solely with
the authors.

10



References

References

[1] R. V. Woldseth, N. Aage, J. A. Bærentzen, O. Sigmund, On the use of
Artificial Neural Networks in Topology Optimisation, Structural and Mul-
tidisciplinary Optimization 65 (10) (2022) 294.

[2] K. Nakamura, Y. Suzuki, Deep Learning-based Topological Optimiza-
tion for Representing a User-Specified Design Area, arXiv preprint
arXiv:2004.05461.

[3] J. Luo, Y. Li, W. Zhou, Z. Gong, Z. Zhang, W. Yao, An Improved Data-
Driven Topology Optimization Method Using Feature Pyramid Networks
with Physical Constraints, CMES-COMPUTER MODELING IN ENGI-
NEERING & SCIENCES 128 (3) (2021) 823–848.

[4] M. M. Behzadi, H. T. Ilieş, GANTL: Toward Practical and Real-Time
Topology Optimization With Conditional Generative Adversarial Networks
and Transfer Learning, Journal of Mechanical Design 144 (2).

[5] H. Edelsbrunner, J. Harer, et al., Persistent Homology-A survey, Contem-
porary Mathematics 453 (2008) 257–282.

[6] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of Persistence Dia-
grams, in: Proceedings of the twenty-first Annual Symposium on Compu-
tational Geometry, 2005, pp. 263–271.

[7] J. Chen, H. T. Ilieş, Maximal Disjoint Ball Decompositions for Shape Mod-
eling and Analysis, Computer-Aided Design 126 (2020) 102850.

[8] D. W. Abueidda, S. Koric, N. A. Sobh, Topology Optimization of 2D Struc-
tures with Nonlinearities using Deep Learning, Computers & Structures
237 (2020) 106283.

[9] I. Sosnovik, I. Oseledets, Neural Networks for Topology Optimization,
Russian Journal of Numerical Analysis and Mathematical Modelling 34 (4)
(2019) 215–223.

[10] D. Wang, C. Xiang, Y. Pan, A. Chen, X. Zhou, Y. Zhang, A Deep Convolu-
tional Neural Network for Topology Optimization with Perceptible Gener-
alization Ability, Engineering Optimization 54 (6) (2022) 973–988.

[11] Y. Yu, T. Hur, J. Jung, I. G. Jang, Deep Learning for Determining a Near-
Optimal Topological Design without any Iteration, Structural and Multidis-
ciplinary Optimization 59 (3) (2019) 787–799.

[12] S. Banga, H. Gehani, S. Bhilare, S. Patel, L. Kara, 3D Topol-
ogy Optimization using Convolutional Neural Networks, arXiv preprint
arXiv:1808.07440.

[13] Z. Nie, T. Lin, H. Jiang, L. B. Kara, TopologyGAN: Topology Optimization
using Generative Adversarial Networks based on Physical Fields over the
Initial Domain, Journal of Mechanical Design 143 (3).

[14] B. Li, C. Huang, X. Li, S. Zheng, J. Hong, Non-iterative Structural
Topology Optimization using Deep Learning, Computer-Aided Design 115
(2019) 172–180.

[15] F. Mazé, F. Ahmed, Diffusion Models Beat GANs on Topology Optimiza-
tion (2022). doi:10.48550/ARXIV.2208.09591.
URL https://arxiv.org/abs/2208.09591

[16] S. Shit, J. C. Paetzold, A. Sekuboyina, I. Ezhov, A. Unger, A. Zhylka,
J. P. Pluim, U. Bauer, B. H. Menze, clDice - A Novel Topology-preserving
Loss Function for Tubular Structure Segmentation, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 16560–16569.

[17] H. Zhao, L. Jiang, J. Jia, P. H. Torr, V. Koltun, Point Transformer, in: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 16259–16268.

[18] M. Gardner, Sixth book of Mathematical Games from Scientific American,
WH Freeman, 1971.

[19] D. Attali, A. Montanvert, Computing and Simplifying 2D and 3D Contin-
uous Skeletons, Computer Vision and Image Understanding 67 (3) (1997)
261–273.

[20] N. D. Cornea, D. Silver, P. Min, Curve-Skeleton Applications, in: VIS 05.
IEEE Visualization, 2005., IEEE, 2005, pp. 95–102.

[21] A. Sobiecki, A. Jalba, A. Telea, Comparison of Curve and Surface Skele-
tonization Methods for Voxel Shapes, Pattern Recognition Letters 47
(2014) 147–156.

[22] Z. Wu, X. Chen, L. Yu, A. Telea, J. Kosinka, Co-skeletons: Consistent
Curve Skeletons for Shape Families, Computers & Graphics 90 (2020) 62–
72.

[23] Z. Guo, R. W. Hall, Parallel Thinning with Two-Subiteration Algorithms,
Communications of the ACM 32 (3) (1989) 359–373.

[24] L. Lam, S.-W. Lee, C. Y. Suen, Thinning Methodologies-A Comprehen-
sive Survey, IEEE Transactions on Pattern Analysis & Machine Intelligence
14 (09) (1992) 869–885.

[25] D. Attali, J.-D. Boissonnat, H. Edelsbrunner, Stability and computation of
medial axes-a state-of-the-art report, Mathematical foundations of scientific
visualization, computer graphics, and massive data exploration (2009) 109–
125.

[26] A. Lieutier, Any open bounded subset of rn has the same homotopy type as
its medial axis, Computer-Aided Design 36 (11) (2004) 1029–1046.

[27] A. Requicha, Mathematical models of rigid solid objects.
[28] F. de Moura Pinto, C. M. D. S. Freitas, L. H. de Figueiredo, Fast medial

axis transform for planar domains with curved boundaries, 2010.
[29] M. M. Behzadi, H. T. Ilieş, Real-time Topology Optimization in 3D via

Deep Transfer Learning, Computer-Aided Design 135 (2021) 103014.
[30] J. You, R. Ying, X. Ren, W. Hamilton, J. Leskovec, GraphRNN: Generat-

ing Realistic Graphs with Deep Auto-Regressive Models, in: International
Conference on Machine Learning, PMLR, 2018, pp. 5708–5717.

[31] J. Serra, Introduction to mathematical morphology, Computer vision,
graphics, and image processing 35 (3) (1986) 283–305.

Appendix

Morphological Thinning
Thinning is a process through which a digital image is sim-

plified while preserving its topological equivalence, and is com-
monly used to eliminate selected foreground pixels (pixels with
a value of 1) from binary images. The mathematical definition of
thinning can be expressed as follows [31]:

X ⃝ T = X/(X ⊙ T ) (7)

where T represents the structuring element (kernel), X is the bi-
nary image, X⃝T is the resulting thinned image, / denotes logi-
cal subtraction, and ⊙ refers to the hit-or-miss transform. The hit-
and-miss operation involves moving the origin of the structuring
element to all points in the image and comparing it with the un-
derlying image pixels. If the foreground and background pixels
in the structuring element exactly match those in the image, then
the pixel underneath the origin of the structuring element is set to
the foreground color. Otherwise, it is set to the background color.
The thinning process is typically applied repeatedly until the im-
age no longer changes (i.e., convergence is reached), resulting in
another binary image [31].

We use here a thinning algorithm that draws inspiration from
[23]. The algorithm makes multiple passes over the binary im-
age, removing pixels that match a set of criteria designed to thin
connected regions while maintaining connectivity. In the binary
image, let p be a pixel with its corresponding neighbors pi, where
i ranges from 1 to 8. The neighbors p2, p4, p6, and p8 are p’s side
neighbors, and pl, p3, p5, and p7 are p’s diagonal neighbors. The
number of distinct eight-connected components of ones in p’s
eight-neighborhood is denoted as C(p). If C(p) = 1, then p is
eight simple when p is a boundary pixel.

For each pixel p in the image, p is deleted if all of the follow-
ing conditions are met:

1. C(p) = 1
2. 2 ≤ N(p) ≤ 3
3. Apply one of the following:

• In the odd iterations: (p2 ∨ p3 ∨ p̄5) ∨ p4 = 0
• In the even iterations: (p6 ∨ p7 ∨ p̄1) ∧ p8 = 0

Where ¯ , ∧, and ∨ are the logical complement, AND and OR,
respectively. N(p) also is defined as:

N(p) = min[N1(p),N2(p)] (8)

Where

N1(p) = (p1 ∨ p2) + (p3 ∨ p4) + (p5 ∨ p6) + (p7 ∨ p8) (9)

11

https://arxiv.org/abs/2208.09591
https://arxiv.org/abs/2208.09591
http://dx.doi.org/10.48550/ARXIV.2208.09591
https://arxiv.org/abs/2208.09591


N2(p) = (p2 ∨ p3) + (p4 ∨ p5) + (p6 ∨ p7) + (p8 ∨ p1) (10)

Thinning stops when no further deletions occur. The pseu-
docode of the algorithm is shown in Algorithm 2. Condition 1 is
essential for maintaining local connectivity in the event of pixel
deletion and prevents the removal of pixels located along the cen-
tral medial curves. For a comprehensive proof of this connectiv-
ity preservation, we recommend referring to [23].

Algorithm 2 The thinning algorithm

1: function Thin(img)
2: iter ←0
3: n pts old ←inf
4: n pts new←Sum(img)
5: while n pts old , n pts new do
6: n pts old ←n pts new
7: for P in img do
8: if C(P) = 1 and 2 ≤ N(P) ≤ 3 then
9: if iter is odd and (p2∨ p3∨ p5)∨ p4 = 0 then

10: img[P]← 0
11: else if iter is even and (p6∨ p7∨ p1)∧ p8 = 0

then
12: img[P]← 0
13: end if
14: end if
15: end for
16: iter ←iter+1
17: n pts new←Sum(img)
18: end while
19: return img
20: end function

12


	Introduction
	Background
	Contributions
	Method
	Binary Image to Graph
	Maximal Disjoint Ball Decomposition (MDBD)
	Branch and End Point Detection

	Edge Classification with the Point Transformer
	Evaluation Metrics

	Results and Discussion
	Overall Results
	Time Complexity
	Ablation Study

	Conclusions

