Taming Connectedness in Machine-Learning-based Topology Optimization with
Connectivity Graphs

Mohammad Mahdi Behzadi®, Jiangce Chen®, Horea T. Ilies?

“Department of Mechanical Engineering, University of Connecticut,
b Department of Mechanical Engineering, Carnegie Mellon University,

Abstract

Despite the remarkable advancements in machine learning (ML) techniques for topology optimization, the predicted solutions often
overlook the necessary structural connectivity required to meet the load-carrying demands of the resulting designs. Consequently,
these predicted solutions exhibit subpar structural performance because disconnected components are unable to bear loads effectively
and significantly compromise the manufacturability of the designs.

In this paper, we propose an approach to enhance the topological accuracy of ML-based topology optimization methods by em-
ploying a predicted dual connectivity graph. We show that the tangency graph of the Maximal Disjoint Ball Decomposition (MDBD),
which accurately captures the topology of the optimal design, can be used in conjunction with a point transformer network to improve
the connectivity of the design predicted by Generative Adversarial Networks and Convolutional Neural Networks. Our experiments
show that the proposed method can significantly improve the connectivity of the final predicted structures. Specifically, in our exper-
iments the error in the number of disconnected components was reduced by a factor of 4 or more without any loss of accuracy. We
demonstrate the flexibility of our approach by presenting examples including various boundary conditions (both seen and unseen),
domain resolutions, and initial design domains. Importantly, our method can seamlessly integrate with other existing deep learning-
based optimization algorithms, utilize training datasets with models using any valid geometric representations, and naturally extend to

three-dimensional applications.

Keywords: Topological Connectivity, Topology Optimization, Maximal Disjoint Ball Decomposition, Point Transformer,

Connectivity Graphs.

1. Introduction

Machine learning techniques have gained momentum in prac-
tically all fields of engineering and science, and topology opti-
mization (TO) is no exception. In fact, a large number of pa-
pers have been published recently and are aimed at reducing the
computational expense associated with gradient-based topology
optimization. These methods effectively generate predictions
that closely resemble the output of optimal structures obtained
through gradient-based optimization, and even exhibit some level
of generalizability in exploring the design space. However, these
predictive methods still face practical challenges. A significant
and common limitation of these methods is their tendency to pro-
duce designs with structural disconnections and other undesir-
able features. Consequently, these suboptimal designs exhibit
weaker structural performance and reduced manufacturability
compared to the optimal solutions predicted by gradient-based
optimization methods [1]]. To enhance the quality of predicted
structures, researchers have explored various techniques. Some
approaches involve using extensive training datasets [2]] or intro-
ducing physical constraints during the training process [3]]. How-
ever, these methods are inefficient and computationally demand-
ing, as generating large amounts of data and performing finite
element analysis are both computationally expensive. We have
previously demonstrated in [4] that by incorporating a topologi-
cal loss function based on persistent homology into the training
process, the number of structural disconnections is reduced by

*Corresponding author
Email address: horea.ilies@uconn.edu (Horea T. Ilies)

Preprint submitted to Elsevier

almost a factor of 2. However, this approach requires the explicit
representation of topological features, and existing implementa-
tions of persistent homology metrics [5} 6] are computationally
expensive - see also section[2} Consequently, the training process
becomes time-consuming. Moreover, integrating additional loss
function terms into the model requires frequent tuning of weight
parameters for each new network or dataset, adding an additional
layer of complexity and time investment.

One of the key similarities between almost all of the proposed
learning-based topology optimization algorithms is that, in the
end, they all produce structures represented as binary images in
2D or 3D. While this representation has clear advantages, in-
cluding ease of understanding, straightforward visualization, and
compatibility with powerful image-based ML models and algo-
rithms, it also has several important limitations. For example,
such a representation induces a very large number of variables,
which becomes even more challenging in 3D, requiring large or
very large-scale deep learning networks. Additionally, even a
small number of prediction errors in individual cells (pixels in
2D and voxels in 3D) can result in structural discontinuity (i.e.,
partially connected or disconnected members) within the final
structure.

Intuitively, reducing the number of variables should improve
the quality of the predictions, but there are limited options to do
so for standard image-based representations. While reducing the
resolution intuitively leads to fewer variables, it also results in
a loss of crucial geometric details necessary for predicting vari-
ous real-world structures. In this work, we exploit the properties
of the Maximal Disjoint Ball Decomposition (MDBD) proposed
in [7] to convert a binary image representing a structure into a

September 25, 2023

/ Stage 1: Train the Edge Classifier \

" IMG to Graph { Prepare Data
; MDBD KNN .
Structure [+-> Point Transformer
i + | : + '
Branchpoint| Edge :
K ' | Detection | : i |Labeling| /
e Stage 2: Predict the Missing Edges)
{Structure Predictioﬁ} {" IMG to Graph /Find Missing Edgesﬁ
i [Boundary| | E i, Edge | i
- lconaitions| 1, [MP®P | xaw "] Prediction|""
i ¥ + A —T—
: TO 3 Branchpoint| : ré: missing :
: -) ' ges on '
. Predictor ! Detection ; !
\ ,,,,,,,,,,,,,,,,, S N e w.L_Image | .- J

Figure 1: The proposed framework. In the initial phase, the structure is trans-
formed into a graph using a combination of ball centers from MDBD and a
branch point detection method to identify additional nodes of the graph. The
edges are determined by connecting the adjacent nodes in the thinned structure.
To further refine the graph, we use the K-Nearest Neighbors (KNN) algorithm to
add additional potential edges. A Point Transformer Network is then trained on
the labeled graphs. In the second stage, the optimal structure is predicted using
boundary conditions and a TO predictor. This structure is then converted into a
graph, where each node is connected to its K nearest neighbors using KNN. The
trained model is then utilized to determine which edges should be retained and
which should be discarded. The final step is to project the new edges onto the
predicted structure and integrate them with the rest of the structure.

graph while maintaining its original topology. Our approach in-
volves connecting each node in the graph to its closest neighbors
and assigning binary labels to the edges. By doing so, we effec-
tively reframe the task of enhancing topological connectivity as
an edge-label classification problem.

2. Background

The high computational cost of gradient-based TO algorithms
prompted the development of a number of machine learning
methods that, once trained, can make predictions almost instan-
taneously. Recently proposed CNN algorithms can predict the
optimal topology for 2D [8}, 9} [10, [11] and 3D [12] domains.
However, these algorithms have difficulties in predicting a high-
quality and well-connected optimal structure.

Several recent papers have improved the quality of the gener-
ated structures by adding a large amount of data to their train-
ing process. For instance, the framework developed in [11]
uses 80,000 low-resolution training cases and their correspond-
ing high-resolution data to train and validate their deep learning
model. By using a large amount of data, they have shown good
prediction accuracy in terms of pixel-wise density errors. Their
results were used as a benchmark in [2], where the authors used
296,000 training cases to train their CNN model. By using a
training dataset three times as large as the one in [L1]], the authors
in [2] reported improved prediction accuracy in terms of pixel-
wise density errors, as expected. However, these approaches re-
quire very large amounts of training data, making it computation-
ally prohibitive to apply them to higher resolution domains due
to the computational expense of generating such large training
sets. Moreover, these methods are unable to control the topo-
logical connectivity of their predictions, resulting in a potentially
large prediction error in terms of design performance.

More complex networks have been proposed to improve the
quality of the predicted structure. For example, generative ad-

versarial networks (GANSs) have been used in [13] [14], and the
model developed in [13]] has shown some generalizability. How-
ever, these models are often difficult to train, require a large
amount of data, and frequently produce structures with discon-
nected or partially connected members, particularly for boundary
conditions outside the training distribution. In an effort to gen-
erate better structures than those produced by GANs in terms of
manufacturability, the model described in [[15]] uses a conditional
diffusion model called TopoDiff. It utilizes external guidance
strategies to minimize mechanical compliance and improve man-
ufacturability by employing two neural networks responsible for
predicting the compliance of the structure at different stages of
training, as well as the probability that the topology does not con-
tain “floating material” or dangling structural members. TopoD-
iff employs a dataset of 30,000 cases to train the diffusion model,
60,000 cases to train the compliance regressor, and 58,000 cases
to train the classifier that predicts the presence of floating mate-
rial. This method could achieve an eight-fold reduction in aver-
age physical performance errors and an eleven-fold reduction in
infeasibility compared to TopologyGAN [13]. Despite demon-
strating better performance than GANSs, the proposed model in
[L5] uses low-resolution 2D domains (64 X 64) for its training
process, which contains significantly fewer details and thin struc-
tural members compared to the high-resolution domains obtained
from gradient-based optimal solutions or higher resolution ML
predictors. Moreover, using the higher-resolution domains re-
quires more complex neural networks (i.e., more training data)
for the external guidance methods to maintain the same level of
error in predicting compliance and classifying floating material.
On the other hand, the diffusion models are much slower than
GAN:Ss in predicting the optimal design, taking 21.59s for TopoD-
iff compared to 0.06s for TopologyGAN. This difference in gen-
erating the design is significant for this domain resolution. For
instance, by using the output of TopologyGAN as an input to a
SIMP solver through several iterations, one can produce a solu-
tion of comparable quality in less than 20s for the same domain
resolution of (64 X 64).

Several papers propose alternative approaches to enhance their
main loss function and achieve improved results, not only in the
field of topology optimization (TO) but also in other domains.
For instance, the method proposed in [3] introduced a feature
pyramid network (FPN) for TO, which trains using loss func-
tions that combine pixel-wise errors and physical constraints. In
their work, the authors proposed a physical loss function that
measures the compliance error between the predicted and ground
truth structures at each step. While their methods exhibited im-
provements over their baseline model, the necessity to perform fi-
nite element analysis during every loss function calculation made
the process time-consuming. This can be one of the reasons why
they conducted experiments using only low-resolution structures
(64x32) in their experiment. In our own research [4]], we adopted
a topology-aware loss function in conjunction with binary cross-
entropy to explicitly incorporate the topological information of
the predicted and ground truth structures into the training pro-
cess. By introducing the topological loss function, we achieved
nearly a twofold improvement in the connectivity of the gener-
ated structures. However, our loss function included terms based
on persistent homology, which proved to be computationally in-
tensive to compute. Similar modifications to loss functions, in-
corporating topology-aware terms, have been explored in other
domains, as demonstrated in [[16]. It is important to note that
adding supplementary term(s) to the main loss function neces-
sitates tuning the weight of the new loss, thereby increasing the
computational cost of training. Moreover, these additional terms

cannot be directly applied to the output of other deep learning
models unless those models are trained using the same loss func-
tions.

3. Contributions

In this work, we leverage the properties of Maximal Disjoint
Ball Decomposition (MDBD) [[7] to convert the structure repre-
sented as a binary image into a graph that preserves the topology
of the domain. We then demonstrate that by connecting each
node in the graph to its nearest neighbors and by assigning a bi-
nary label to each edge, we can effectively transform the problem
of improving topological connectivity into an edge label classi-
fication problem. This approach allows us to use a point trans-
former [[17]] network, which is a type of neural network that has
shown strong performance in relevant geometric learning tasks,
such as learning the topological features of the graph and graph
edge labeling. Specifically, in this paper, we utilize this trained
model to predict the missing edges in the graph obtained from
the structure predicted by any deep learning model. By project-
ing the added edges onto the predicted structure, we can effec-
tively connect disconnected members of the prediction made by
the deep-learning model. Figure|l|illustrates the key steps of the
proposed framework. Our results indicate that our method can
significantly reduce the error in the 0”* Betti number [1_-] without
compromising accuracy, and in our experiments the error in the
0" Betti number was reduced by a factor larger than 4.

To the best of our knowledge, this is the first attempt to use
graphs preserving the homotopy type of the domain to enhance
the connectivity of the structures. Moreover, our method repre-
sents a promising step forward in improving the connectivity of
the TO predictions made by machine learning algorithms using
the image-based representation.

4. Method

The proposed framework is depicted in Figure[I] which shows
how to transform the problem of improving the connectivity of
the predicted optimal topology into a graph-based edge classifi-
cation problem. Importantly, the method can augment any other
deep learning prediction model for TO. Moreover, it can be used,
in principle, with any of the well-known curve skeletons - a con-
cept extensively studied [[19, 20, 21} 22]]. However, in this work,
we employed the graph obtained from the MDBD spherical dis-
joint decomposition due to its theoretical topological correctness
and its representation-agnostic definition in terms of distances.
The latter attribute allows us to compute the MDBD decompo-
sition for any valid geometric representation, including cellular
decompositions. In the following section, we provide a detailed
explanation of each stage of the proposed framework.

4.1. Binary Image to Graph

MDBD is defined as a recursive placement of maximal balls
that fit inside a given domain [7]. Observe that connecting the
centers of the MDBD balls that have at least 2 tangency points
with the domain boundary can yield a graph that is homotopy
equivalent with the domailﬂ as shown in figure 2 The MDBD

I'The k" Betti number captures the number of k-dimensional holes on a topo-
logical surface [[18].

2This leverages the fact that the balls with 2 or more tangency points with the
domain boundary are centered, by definition, on the medial axis [7].

Figure 2: Connecting the centers of the disks that have more than one tangency
with the domain boundary results in a graph that has the same homotopy type as
the domain.

implementation used in this work prioritized efficiency over ac-
curacy, and, as a result, our MDBD implementation does not
compute tangency information for the balls, which is outside
of the scope of this manuscript. Instead, to compute the graph
nodes, we utilize here a truncated version of MDBD combined
with a morphological thinning algorithm to determine the addi-
tional nodes required for the graph. Furthermore, edges are es-
tablished by connecting the nearest neighbor nodes in the aug-
mented thinned structure. This methodology is explained in
greater detail in the following section.

4.1.1. Maximal Disjoint Ball Decomposition (MDBD)

The Maximal Disjoint Ball Decomposition (MDBD) [[7] is a
recently proposed geometric representation scheme that can be
thought of as a recursive placement of the largest closed balls
within a domain. This decomposition comprises a collection
of non-overlapping d-dimensional balls, where d is the dimen-
sion of the space for the given domain. MDBD has a multi-
tude of applications in shape similarity, processing, and analysis.
This work relies on the facts that MDBD: (1) is representation-
agnostic for the given domain; (2) places no restrictions on the
complexity of the solid 2D or 3D shape being analyzed; (3) pro-
duces a connectivity graph that captures the topology of the do-
main; and (4) provides an intrinsic and compact parameterization
of the optimal solution output by TO algorithms in terms of a col-
lection of ball centers and their radii.

Hence, we used a truncated MDBD to identify potential nodes
for the graph representation of the ground truth structures, as
illustrated in Figures Eka) and (b). Given that our MDBD im-
plementation does not calculate the tangency points between the
maximal balls and the boundary, as explained earlier, we select
an MDBD truncation level that matches the size of the smallest
feature of interest in the domain. For the examples investigated
in this work, retaining approximately 20% of the total number
of balls effectively captures the smallest features present in the
structures, as demonstrated in Figure [3(c). We then apply mor-
phological thinning [23} 24]] to the structure and use it to gener-
ate candidate edges in the graph. The black pixels in Figure [3[d)
depict the thinned structure. Next, we compute the minimum
distance from the center of the balls to the thinned structure and
project the centers having a minimum distance of less than 5 pix-
els onto the thinned structure, as depicted in Figure [3[e). Note
that, in principle, steps 2-4 can be eliminated by computing the
ball-boundary tangency information for all the balls and retain-
ing only the balls that have at least 2 points of tangency with
the domain boundary, as described above. In this case, a correct
graph could be constructed by simply connecting the centers of
these balls that are mutually tangent.

This process generates candidate nodes for the graph. How-
ever, this set of nodes would result in an incorrect graph if we
assume that every node is connected to its immediate neigh-
bors on the thinned structure, as shown in Figure Ekg). Thus,

(9)

(h) (i)

Figure 3: The step-by-step procedure to convert the structure to the graph. (a) shows the optimum structure, (b) is the output of the MDBD for the structure, (c) shows
the remaining disks after removing the small ones, (d) shows the thinned structure with the disks, (¢) shows the projected disk centers on the thinned structure, (f) shows
the projected centers with corners and the endpoints, (g) the graph created by the projected centers alone, (h) the graph created by the corners and endpoints alone, (i)

final graph created by combining the projected centers with corners and endpoints.

we have to add additional nodes to the graph such that the con-
nected graph would have the same homotopy characteristics as
that of the structure. The computation of these branch points is
discussed next.

4.1.2. Branch and End Point Detection

(@) (b) (c)

Figure 4: An example of the kernel used to detect branch points and end points
of the thinned structure. (a) is the 3 x 3 kernel, while (b) and (c) are examples of
branch and end points, respectively.

The additional graph nodes consist of branch points, i.e., pix-
els of the thinned structure that are connected to three or four
other pixels of the structure, and end points, which are defined
as pixels of the thinned structure that are connected to only one
other pixel of the structure. These branch and end points were ob-
tained by moving a 3x3 kernel over a thinned structure to identify

points where the middle element of the kernel is 1, and the sum
of the elements in the kernel is greater than 3 for branch points
or equal to 2 for endpoints. Figure []illustrates the kernel corre-
sponding to a branch point and an end point. Given the kernel
in Figure (), if the middle element is 1, along with three other
elements of the kernel as shown in Figure [d(b), then the point
on the thinned structure is considered a branch point. Addition-
ally, if the kernel contains only one additional non-zero element
besides the middle element, as illustrated in Figure Elkc), then
the corresponding point on the thinned structure is an end point.
By adding the branch points and end points to the list of graph
nodes described above (Figure 3{(f)), we can create the graph. It
is important to note that using only the branch points and end
points, without the graph nodes produced by MDBD, would not
yield a graph that is homotopy equivalent with the domain. As
shown in Figure [3(h), using branch points and end points alone
creates a graph that misplaces the topological features and fails
to identify the gaps between two adjacent neighbors. However,
by combining these two methods, we can convert our structures
into graphs that are homotopy equivalent with the structures, as
shown in Figure [3i). Algorithm [T] presents the pseudocode for
our procedure to generate a graph from an image containing the
optimal topology.

Observe that MDBD itself captures the topological informa-
tion of the structure. Moreover, by connecting the centers of the
circles that have two or more tangency points with the boundary
of the domain, we generate a graph that is homeomorphic with
the medial axis, which in turn is homotopy equivalent with the

Algorithm 1 Image to Graph algorithm

1: procedure IMGTOGRAPH(img)

2 disks «<~MDBD(img)

3 disks «<Remove_Smalldisks(disks)

4: thinned «—Morphological_Thinning(img)

5: min_dists «<Distance_to_Thinned(thinned,disks)
6 nodes «—Project(thinned,disks,min_dists)

7 nodes «—Corner_Endpoints(thinned)+nodes
8 edges «Find_Edges(nodes,thinned)

9: graph «Create_Graph(nodes,edges)
10: return graph
11: end procedure

structure, as depicted in Figure [2 This is so because these cen-
ters will lie, by definition, on the medial axis of the domain, and
the properties of the medial axis are well documented — see, for
example, [25] [26]], including its homotopy equivalence{ﬂ with the
domain. However, in the current implementation of the MDBD
algorithm, we do not compute the tangency information between
the circles and the boundary. Thus, we chose to employ image
processing algorithms using morphological operations to gener-
ate the end points and branch points of the skeletons. Our algo-
rithm represents a practical approach for converting binary im-
ages into graphs with correct topology. We verified our algorithm
on complex 2D domains, including the one illustrated in Figure
5] which is homeomorphic to a 2D disk.

It is worth mentioning that the connectivity graph of an un-
truncated MDBD for a 2D domain is a 2-complex, as detailed in
[7]. However, the graph obtained by connecting the centers of
the 2D balls that have 2 or more tangencies with the boundary,
whose centers are by definition on the medial axis, is not formed
by collections of 2-simplices whose underlying space is part of
the given domain. Instead, for such a 2D domain the resulting
graph is a curve skeleton that is a simplicial 1-complex, i.e., col-
lection of 1-simplices, as visually depicted in Figures[2]and[5] A
good summary of the concepts from algebraic topology related
to simplicial complexes can be found in [27].

4.2. Edge Classification with the Point Transformer

The main idea behind this work is to transform the connec-
tivity problem into an edge-label classification problem. In do-
ing so, we identify the missing edges in the graph corresponding
to the predicted structure. Subsequently, by projecting the new
edges onto the predicted structure, we connect the disconnected
members to the main body of the structure. After converting the
predicted structure into a graph, we connect each node to its 5
nearest neighbors and request the network to classify each edge.
The edges labeled with 0 are removed from the main graph.

To create a dataset suitable for training the model, we connect
each node in the ground truth graph to its 5 nearest neighbors and
assign a label to each edge. The edges that exist in the ground
truth graph are labeled with 1, while the edges that do not exist
in the ground truth graph are labeled with 0. Figure [¢]illustrates
an example of this process. The nodes in the ground truth graph,
as shown in figure @a), are connected to their 5 nearest neigh-
bors, resulting in the graph depicted in figure [6(b). Finally, by

3Note that in [26] it is proven that any bounded open subset in R”" has the
same homotopy type as its medial axis. Consequently, the open set defined by
the optimal topology and its medial axis have the same homotopy type.

assigning labels to each edge, we obtain the graph shown in[§c),
where the red edges have a label of 1 and the blue edges have a
label of 0.

We developed a model based on the point transformer [17]] to
classify the edges. The network architecture is shown in figure
and the model consists of 6 point transformer convolutional
layers, where each layer updates the node features according to:

X; = Z ai,j(W3xj+(5ij))

JENG)U(i)

where the attention coefficient ; ; and the positional embedding
6;; are computed as:

;= softmax(yy(Wx; — Wsz + 5,‘.]')) 2)

and
6ij = ho(P; — P}). 3)

Here, x; is the updated feature for node i, x; and x; are the feature
vectors for node i and j, Ws are learnable weights, yy and hy are
the neural networks, and P; and P; are the position of node i and
J, respectively.

The inputs to the model consist of the node features, which
are the normalized coordinates of each node, the adjacency ma-
trix, and the location of the nodes in the domain required for the
message passing. The linear layer processes the node features
before they are input to the point transformer layer. After each
point transformer layer, there are ReLU activation and dropout
layers to mitigate overfitting, except for the final point trans-
former layer. The output of the final point transformer layer is
then passed through a normalization layer, from which the edge
features are derived by calculating the average of the correspond-
ing node features. These edge features are then input into a clas-
sifier to determine the label of each edge. The dataset we used for
our experiment contains 2,250 binary images of size 120 x 240,
which were previously used as training data in [4} [29]. The seen
and unseen boundary conditions used for the train and test sets
are defined in [4]]. Before converting the structures to graphs, the
data was augmented by mirroring and rotating by 180 degrees to
artificially increase the size of the dataset. We trained our model
for 150 epochs on a PC equipped with an Intel Core i7-10750H
CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 2070 Su-
per GPU, and implemented early stopping to prevent overfitting
and select the model with the best performance. The changes in
the loss function at each epoch during training are depicted in
Figure 8] It is worth mentioning that the training process lasted
approximately 22 hours on a PC equipped with the aforemen-
tioned specifications.

The trained point transformer was then used to predict the
missing edges in the graph corresponding to the predicted struc-
tures. Then the missing edges were projected onto the structure
as a line segment with a thickness of 2 px.

4.3. Evaluation Metrics

We use several different evaluation metrics, including the
pixel-wise accuracy, defined as the percentage of correctly classi-
fied pixels, and the Betti number error, which directly compares
the topology (e.g., number of handles) between the prediction
and the ground truth. We calculate the 0" Betti number by count-
ing the number of components in the image and 1* Betti number
by counting the number of holes in the structure. The Betti num-
ber error was obtained according to:

Bi(p)- B'(g)

i"" Betti error = .
B'(g)

“4)

(@)

(b)

Figure 5: A complex and connected domain without holes, i.e., homeomorphic to a disc, from [28]]. (a) shows the original image and (b) displays the graph produced

by our algorithm.

(a)

Figure 6: Creating the training dataset. (a) is the ground truth graph, (b) the ground truth graph after connecting each node to its 5 nearest neighbors, (c) shows the
labeled graph where the edges with label 1 are shown in red and the label 0 are shown in blue.

where B! is the i Betti number, p is short for predicted structure
and g stands for ground truth.

Two other metrics that we used to measure the performance
of the proposed method are the Compliance Error (CE) and the
Volume Fraction Error (VFE). The compliance error can be cal-

culated from:
_ 1€(p) - C(g)l

C®

where C(p) and C(g) are the compliance of the predicted and the
ground truth structure, respectively. Similarly, VFE is obtained
from:

CE (&)

[VF(p) - VF(g)
VF(g)

where VF(p) and VF(g) are the volume fraction of the prediction
and the ground truth, respectively.

(6)

VF error =

5. Results and Discussion

5.1. Overall Results

We defined four testing scenarios to evaluate the performance
of the proposed approach in improving the connectivity of the
predictions. We used the predicted structure by GANTL [4]] and
the CNN proposed in [29] at two different resolutions: 120 x 240
and 200 x 400. We considered both seen and unseen bound-
ary conditions (BC) and different initial domains, namely the L-
shape, curved beam, L-shape with a hole, and frame. Figures
and[I0]show a side-by-side comparison of the original prediction
by the TO predictor and the processed structure using our model
for all scenarios. The corresponding evaluation data, captured by

the performance metrics described in section4.3] are collected in
Table [Tl

The performance data shows that our method can improve the
connectivity of the predicted structures using two different TO
predictors with different resolutions, boundary conditions, and
initial domains. Specifically, for the 1* scenario (120 x 240 do-
mains with seen BCs shown in Figure @, our method could re-
duce the 0" Betti error by a factor of 4. However, the error in
the number of holes increased from 15.3% to 18.4%, which was
predictable. The reasons may be that closing open loops by con-
necting them to the main body may add additional holes to the
structure, coupled with the fact that our method, as formulated,
cannot create new or destroy existing holes in the main body.
Our method has also reduced the compliance error from 4.90% to
3.8%, thus improving the performance of the structure. This im-
provement indicates that connecting the disconnected members
to the main body can enhance the structure’s performance. Fi-
nally, as expected, connecting the disconnected or partially con-
nected components to the main body adds additional material to
the domain, leading to an increase in the volume fraction error.
However, in our experiments, adding the additional material cov-
ered areas that were eliminated in the predicted structure, which
we suspect may be the reason why the accuracy remained practi-
cally unchanged.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>