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ABSTRACT metrically. Parametric shape optimization searches the space

We propose a novel approach to shape optimization that spanned by the design variables to minimize or maximize some
combines and retains the advantages of the earlier optimization externally defined objective function. In other words, parametric
techniques. The shapes in the design space are represented imshape optimization is essentiallgi@ingproblem that is a natural
plicitly as level sets of a higher-dimensional function that is con- extension of parametric computer-aided design.

structed using B-splines (to allow free-form deformations), and The downside of parametric shapes is that they do not pro-
parameterized primitives combined wkkfunctions (to support vide any explicit information about the geometry or topology of
desired parametric changes). the shape’s boundaries. This, in turn, leads to at least two widely

Our approach to shape design and optimization offers great acknowledged difficulties: boundary evaluation may f48,p5],
flexibility because it provides explicit parametric control of and topological changes in the boundaries may invalidate bound-
geometry and topology within a large space of freeform shapes. ary conditions or the solution procedur@.[ A common ap-

The resulting method is also general in that it subsumes most proach to dealing with these difficulties is to restrict the design
other types of shape optimization as special cases. We describespace to shapes with identical parameterization and topology, as
an implementation of the proposed technique with attractive nu- illustrated in Figurel.

merical properties. The effectiveness of the method is demon-

strated by several numerical examples. [K

KEYWORDS: shape optimization, topology optimization,
parametric design, level-set, implicit representati®fiinctions, Q
shape sensitivity analysis
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(@) A simple shape is parame- (b) Changes in parameter values
terized by three dimensions that  that result in a different topology
1 Introduction procedurally define the shape’s  are usually not allowed.
1.1 Shape optimization: parametric vs free-form boundary.

A parametricshape is defined by a finite, and usually small,
set of geometric parameters called dimensions. Common ex-
amples of dimensions include sizes, radii, distances, angles, . ] .
and other geometrically meaningful design and/or manufactur- In contrast to parametric shapesiee-formshape is defined

ing variables. Most modern CAD systems represent shapes para_by its boundaries without any prior explicit dimensional parame-
terization. Free-form shape optimization searches the space of

free-form shapes by incremental local motion of the free-form

Figure 1. Traditional parametric shape optimization and limitations.

*Address all correspondence to this author.
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boundaries. This seemingly precludes topological changes in theterms of meaningful geometric parameters). The key unifying
boundary. The difficulty is resolved by representing the shape’s concept is that of an implicit representatidrx,t) that is para-
boundaryimplicitly in terms of level sets (isocurves or isosur- meterized locally in terms of B-spline functionand/or glob-
faces) of some higher dimensional time-varying hyper-surface ally in terms of dimensional parameters. We show that such
®(x,t) [37). Topological changes in level sets are captured in a representation may be constructed udtalinctions B0, 39
terms of smooth motions of the hyper-surface, while retaining the that transform any set-theoretic construction into a sufficiently
free-form nature of the shape’s boundaries. In particular, direct smooth hyper-surface via simple syntactic substitution.
movement of a level set surface has been used to represent both  We discuss the implementation of the proposed approach in
deformations of boundaries and to create holes during the opti- a meshfree environment developed by the auth#8s49] and
mization processi4,3]. Figure2 shows atypical shape deforma-  demonstrate its performance by applying it to a widely studied
tions allowed in a free-form shape optimization (with topological minimum compliance structural shape optimization problem.
changes). Free-form shapes are usually parametdaezatly by

1.2 Related work

Parametric shape optimization is a well researched area that
is discussed in many referencd$]9, 22] and is subject to the
limitations discussed above.

Free-form shape optimization has also been studied exten-
sively, with numerous advances during the last decade focusing
on handling topological changes. To allow topological changes
of the shape, early methods explicitly move the shape’s bound-
ary and introduce holes in the domain to accommodate topolog-
ical changes. For example, evolutionary structural optimization
(ESO) method56], Bubble method 11], topological sensitivity
analysis based method. Recently proposed level set meth-
ods in shape optimization have attracted much attention, due to
their ability to track evolving boundaries and handle topologi-
cal changesd7]. In [38], the shape is represented as a level-
| set of a higher dimensional surface and a structural optimization
problem is formulated and solved on this higher-dimensional sur-
face. Holes can be created during the optimization process by
modifying the surface, based on criteria that are similar to those
used by other evolutionary methods. Shape sensitivity analysis
in [2] and [B2] show that the level-set speed function may be
chosen to guarantee a descent direction of the objective func-

Figure 2. Free-form deformation with topological changes can be repre-
sented by a moving level set hyper-surface.

polygonal approximations or in terms of some compactly sup-
ported basis functions (radial basis functions, B-splines, etc.) It
should be intuitively apparent that the space of free-form shapes
is usually much larger than a typical space of parametric shapes.
However, without additional constraints, such free-form repre-
sentations cannot be controlled in terms of global dimensional
parameters that are so critical in many design and manufactur-
ing applications. Consequentially, free-form optimization tech-
nigues often produce optimal solutions that may not be manufac-
turable. Because of this limitation, free-form shape optimization
(with topological changes) is particularly useful at the conceptual

design stagé.The output of free-form optimization is then trans- =~ ) ) . .
tion, which gives mathematical guidance on how to move the

formed into detailed shape design, typically relying on heuristic . .
shape processing techniques that may not be consistent with theboundary. However, it has also been observed that motions of the

original formulation of the optimization problem. Ievel—slet surrf1a(|:e b.as?dd OE szape senlsm;/lty alhqne_ do not appear
In this paper, we combine parametric and free-form shape to nucleate holes inside the domak).[In fact, this is not sur-

representations in a common unified representational framework. P"'SIN9 b_ecause the shape sensitivity analysis is based on _small
The new representation retains all the advantages of free-form perturbations of the boundary, and therefore does not provide a

and parametric shapes, and supports parametric, free-form, Ormechanism for sudden topological changes such as nucleation of

hybrid types of shape optimization, with or without topological holes. In order to overcome the t_opologmgl "m'ta“,or,‘? In prac-
changes. The resulting shapes may have boundaries that are parI_ICG, many small holes are often inserted into th.e initial design
tially free-form (thus allowing sufficiently large design space) and are allowed to merge under boundary motion, but the re-

and partially parametric (thus providing control of the shape in sult of optimization appears to depend on the initial distribution
P yp ( P g P of holes R, 38,52]. Another approach to handling topological

changes with level sets is described &[] where the authors

use radial basis functions to represent the level set surface and
homogenization, which uses material models with micro-structures and seeks extend the bgundary VeIOCIty of the shapg to the.eptlre domain.
an optimal layout over the design domain. Since we are mainly focusing on The authors 'nﬂ represent level-set function by finite element

shape optimization at the macro (geometry) level, we refrain from discussing the Shape functions and rely on a heuristic criterion to perform shape
topology optimization methods based on material distributions.

1This observation also applies to all topology optimization methods, such as
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and topology optimization. The concept of topological derivative methods include exact and approximate distance fidlds5],

has been proposed to overcome the difficulty of generating inte- blending of implicit primitives like blobs, spheres, quadrics, and

rior holes [7,1,53] and appears to be promising, but is not fully local quadratics that have been fit to the poirds RO, 24, ra-

developed at this time. dial basis functions with both globab)] and compact support
The above efforts (along with many others) have made sig- [35, 19], and multi-variate B-splines to represent scalar fields

nificant contributions to the area of structural shape/topology whose zero-sets represent the boundary of sculpted geometry

optimization. But until now, free-form shape optimization and [26,36]. Implicit representations may be constructed from both

parametric optimization have been treated as separate and mutuConstructive Solid Geometry and Boundary Representations of

ally exclusive techniques in shape design. Our approach builds geometric objects0,42,43]. Although implicit representations

on earlier approaches using level sets, and shares some similarfack explicit boundary informatiord], we will show in Section

ities with [54] and [3], but also incorporates full power and ad- 6 that our implementation does not require it.

vantages of parametric shape optimization.

2.2 Parametric and Free-form Primitive Shapes
1.3 Outline A shape optimization process is an iterative procedure,
The rest of the paper is organized as follows. In Section 2, where the shap® and its implicit representation can be con-
we introduce the proposed shape representation method and exsidered as time-dependent functid®&) and®(x,t).
plain its advantages. In Section 3, a minimum strain energy shape A parametric level-set of a functioh(x,t) is parameterized
optimization problem is formulated using the proposed represen- in terms of geometrically meaningful variablék;}. Familiar
tation technique. Section 4 develops the optimization algorithm examples of implicitly defined parametric shapes include conic
and shape sensitivity analysis for the formulated problem. In sections and quadric surfaces, super-ellipses and super-quadrics,
Section 5, we illustrate the generality and flexibility of the pro- tori, as well as local and global transformations of these simple
posed method to shape control during the optimization process; shapes§]. The corresponding function® for these primitive
numerical examples are given to demonstrate the correctness anghapes are well known. The geometric parameters (radii, focal
effectiveness of the proposed method. Section 6 discusses the nusdistances, angles, positions, etc.) of these implicit representa-
merical implementation issues, followed by conclusions in Sec- tions serve as time-dependent design variables that evolve during
tion 7. the search for optimal shape. We will u$g(x,b(t)) to denote
the level-set functions for parametric shapes, wixdsgthe spa-
tial variable and(t) = {bs(t),bx(t),...,bm(t)} is the set of geo-
2 Shape Representation metric parameters. Parametric implicit representations for more
We propose to represent both free-form shapes and paramet-complex shapes can be built from primitive shapes using a vari-
ric shapes implicitly using level sets of higher-dimensional func- ety of blending, convolution, and set-theoretic techniqéetq.
tions (hyper-surfaces) and use the theorRdiinctions to repre- If the implicit function®p(x, b(t)) is constructed from two prim-
sent arbitrary set combinations of such shapes. The key observative implicit representationg)‘l)(x, bl(t)) andd)%(x, b2(t)), then
tion is that the space of level set functions that are differentiable the vector of parametetsis simply an (ordered) union &t and
almost everywhere is closed undefunctions B5|. b2,
A free-form implicit representation relies on a function
®(x,t) that is constructed as a linear combination of basis func-

2.1 Implicit Representations of Shapes ,
,i=1,...,N} from some complete space:

Implicit representations of shapes have a long tradition in 1ONS{Xi(x)
geometric modeling and computer graphics, as described in sev-
eral recent booksg] 51]. All such representations define a shape N
Q C D implicitly in terms of non-negative values of some func- D(x,t) = ZlCi (OXi(x) (1)
tion ®(x) of the spatial variable asQ = {x € D|®(x) > 0}, =
whereD is some predefined reference domain that contains all
possible shape@ of interest. The boundagQ of the shaped The associated (free-form) shape optimization problem is to de-
is the zero level set of the functi@f) = {x € D| ®(x) = 0}. termine the unknown coefficients;(t)} for an optimal shape.
This definition is consistent with the notion of level setfunc- The term “free-form” is consistent with the fact that the para-
tionin [37,38,2,54,52,3), but also includes many other represen- meters{c;} do not have intuitive geometric meaning. Popu-
tations used in geometric modeling. Many techniques and trans- lar choices of the basis functiodg;(x)} include polynomials,
formations for constructing such representations are describedtrigonometric, B-splines, radial basis functions, etc. For our
in [6], including Ricci’s function 8], theory of R-functions implementation we chose multivariate B-splines on a uniform
[30, 31, 39,40], and convolution methods. More recent notable grid subdividing the reference domdhbecause of their well-
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understood smoothness and local control properti@s The lo-

cal control is particularly useful for performing local shape defor-
mations and for forcing or disallowing some topological changes
by manipulating a particular subset of the coefficients. A free-
form implicit representationl] parameterizes the shape in terms
of the coefficientqc;} of basis functiongx;(x)}. This parame-
trization effectively transforms the difficult free-form shape opti-
mization problem into an easier problem of “sizing” coefficients
{ci}. To distinguish free-form representations from parametric
ones, in the remainder of the paper, we will uBg(x,c(t)) to
denote the implicit functions for free-form shapes, wheigthe
spatial variable and(t) = {ci(t),cx(t),...,cn(t)} is the set of
B-spline coefficients.

2.3 Composition of level-set functions with R-
functions
Complex geometric shapes can be constructed using

Boolean set operations andU. For example, the geometric
domain in Figure3(a) is described by the Boolean expression
Q = (Q1NQ2)NQ3, whereQ;, i = 1,2,3 are primitives shapes
represented implicitly by the corresponding level-set functions
P

®*(x,y) = b~y >0;

D?(x,y) =a?—x2 > 0;

O3(xy) = (x=%)* = (y—¥e)* —1* >0

More generally, most shapes in geometric modeling belong
to the class of semi-analytic sets that, by definition, can be con-
structed using logical operations on equalities and inequalities
with analytic functions 27, 44]. Constructive Solid Geometry
representations rely on such logic expressions explicitly, but they
can also be constructed automatically from a variety of other rep-
resentations47,41,42].

While such Boolean expressions are perfectly adequate for
most geometric computations, they cannot be differentiated. Re-
call that differential properties of the level-set functiénare
essential for shape sensitivity analysis. Fortunately, the the-
ory of R-functions allows to translate any logical composition
of level-set functions into a single sufficiently smooth function
via straightforward syntactic substitutiofR-functions are real-
valued functions whose signs are completely determined by the
signs of their argument9, 39, 40]. They were discovered by
Rvachev who developed the theory specifically for solution of
boundary value problems in mechani®,[32. For example,
multiplication xy of two arguments andy is anR-function be-
cause it is positive only whexandy are both positive or nega-
tive. Considering the sign of a function as its “logical” attribute,
the relationship between logical expressions Bfdnctions be-
comes apparent; for example, multiplication corresponds to the
logical equivalence operation. In fact, every Boolean function
corresponds to a space Bifunctions, but they can be studied

4

and classified in terms of their logical and differential properties.
Properties of the most populRfunctions have been studied ex-
tensively in B0, 31,39,45]. A popular system of these functions

includes:
fingfo= f1+f2—\/ff+f2;
fivofo= fo+ foty/ 2+ £2

It is easy to check thaty Ag f2 is positive if and only if both
f1 and f, are positive; likewisef; Vg f2 is positive if and only
if f1 or f, are positive. In addition, these functions are analytic
everywhere except wheffg = f, = 0. UsingR-functions, any set
theoretic expression can be translated into a real-valued function
by syntacticallyreplacing Boolean operations by the correspond-
ing R-functions. This is one of the major outcomes of the theory
of R-functions.

The composition of primitive implicit representations Ry
functions is another implicit representation that is parameterized
by the union of parameters in the primitives. Furthermore, topo-
logical changes in the level sets of the composite function corre-
spond precisely to the changes in the respective parameter values.
For example, Figur8 (b-d) shows the isolines of the composite
function (positive part) corresponding to the set-theoretic con-
structionQ = Q; N Q2N Q3 in Figure3(a) with different values
for the geometric parametefs, b,r, x.,yc}. Significant shape
changes are obtained without any additional effort to track the
boundary movement or topological changes. All geometric and
topological information is implied by the geometric parameters.

c
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(a) Parametric shape defined as
Q=0Q1NQx,NQ3.
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Figure 3. Parametric shape deformations corresponding to changes in
values of geometric parameters

The above approach witR-functions supports composi-
tion of arbitrary parametric and free-form level-set functions.
Suppose we already have implicit representationskforfree-

form shapes{d)l,...,dblf(‘}, and a collection oKy paramet-
ric shapes{d)l, . .,CD};"}. Each primitive free-form function is
defined by a linear combination of some basis functi®js=

Copyright (© 2006 by ASME



@K (x,c(t)) = Tk cK(t)xk(x) for k=1,...,K¢, and each para- s the optimal shape for the following compliance minimization
metric function is parameterized in terms of geometric parame- problem:

ters asP§ = ®f(x,bX(t)) for k= 1,..., Kp. If a composite shape Minimize 3(u // ZEja &) (U)E (U)dQ
is deflned usmg some Boolean function of all free-form and para- _ 2
metric primitives, then the composite level-set function is im- subjectta a(u,v) =I(v), WeU
mediately obtained a®(x,t) = ® (qn%,...,d)}f(f,q)‘l),...,q)'ép), ulr, = Uo
where® is anR-function corresponding to the Boolean function. / do =V, A3)
i : =Vo
Figure4(b)shows a plot of the constructed level-set function

(positive part) fqr the geometric domam =01NQUQsIn wherea(u,v) = | (v) is the equilibrium equationa(u,v) =
F|gure4_f(a) Ql is a _free—form shapeQ, is a rectangular hole Sl Eijgij(Uea(VAQ, 1(v) = [fqfvdQ + fr,pvdr.  The
andQs is a circular disk attached ;. boundaryl” = 'y + I, Dirichlet boundary conditiom = ug is
specified o™y and boundary tractiop is specified orf ,, f is
the body forceu s the displacement field; is Young’s modulus
ande is elastic strainy is the virtual displacement and is the
space of all admissible displacemenff, dQ = \Vj is simply the
volume constraint.

We represent the shap@ as a level set of a higher-
dimensional functiorp(x,t) that evolves over timeso that

xinsideQ, if ®(x,t) >0

xonTl, if d(x,t)=0". 4
(@) Atwo dimensional free-form  (b) The implicit function con- x outsideQ, if d(x,t) <0
shape combined with two para-  structed using R-functions.
metric shapes. If we use the following characteristic function

Figure 4. Using R-functions to combine free-form and parametric .
1 if d(x,t) >0
shapes. S . H(®(x 1)) = {0 if CDEX t; <0’ ®)
The constructed implicit representation allows a large class ’ ’
of shapes and shape deformations, accommodating a wide range s an indicator of whether a given point belong®tor not,
of implicit modeling techniques. The topological changes can e have
be handled naturally for both free-from shapes and parametric

shapes. The resulting level-set functions are differentiable, al- Q = {x|x€ D,®(x,t) > 0} = {x|x€ D,H(®d) = 1}. (6)
lowing rigorous shape sensitivity analysis and supporting many _ . _
gradient-based optimization methods. Last, but not least, we will We emphasize tha®(x,t) is a general level set function that

show that the constructed representation provides flexibility in can represent free-form shapes, parametric shapes or any com-

using parametric design features directly with shape optimiza- binations of both. The shape design space is determined by how
tion, for examp|e, as ObstadeS, attachmentsl to enforce exactthis level set function is constructed and how it is allowed to vary.
geometric requirements’ etc. FO”OWing [3, 52], we can reformulate Problerﬂ)(as the follow-

ing:

s 1
3 Optimization problem formulation Minimize (u, ®) = //DQE”"' € (Wen(WH (P)dQ

In the rest of this paper, we will study a particular shape subjectta a(u,v,®) =1(v,®), Ywe U
optimization problem in order to illustrate the capability of the ulr, = Uo
proposed representation in shape design. The new representa- !
tion supports a variety of design problems and design optimiza- // H(®)dQ =Vp @)
tion methods with provable properties. For concreteness, we will D
demonstrate it on a compliance minimization problem with vol- where
ume constraint that has been studied by others and is well un-
derstood. But we stress that our approach can also be applied to a(u,v,®) = // Eijki €ij (U)gx (V)H(P)dQ (8)
other structural optimization problems with similar benefits.

We assume that the sha@ewe seek is contained within a )
given domainD, Q C D. The shape with boundaryl” = 0Q I(v, ®) = //D [fv+div(pvn)]H(®)dQ. (©)
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Note that the tractiorp is only defined over the traction
boundaryl,, but in Expressiond), we have an integral of
div(pvn) over the entire domain 2]. Thus, the tractiorp must

be extended from the boundary to D. This can be accomplished,

for example, using transfinite interpolation with approximate dis-
tance fields as described i84).

The level set function in ProblenT) can be constructed by:

1 Kf 41 K
D(x,t) = B(Pg,..., P Dy, D), (20)
where eachbk (x,t) = ®%(x,ck(t)) = T, cK(t)XK(x), k =
1,...,Ks, is an implicitly represented free-form shape, and each
O (x,t) = PK(x,bX(t)), k= 1,...,Kp, is an implicitly repre-
sented parametric shape.

By using Expressionl(), the original shape optimization
formulation as in ProblenB] becomes a fully parameterized op-
timization formulation as in Problen¥Y where the parameters
are the coefficients of B-spline basis functidiek,i = 1, ..., N}
in @k (x,ck(t)), k=1,...,Ks, and geometric dimensiofs¥, j =
1,..., My} in @(x,bX(t)), k= 1,... K. This parameterization
applies to the level set surfadgx,t) instead of the shape itself,
allowing topological changes in the shape without the need to
track the shape’s boundary.

4 Optimization Procedure
Many optimization methods can be used to solve the prob-
lem. Since an equality volume constraint is usually difficult to

enforce during the optimization process, we use the augmented

Lagrangian multiplier method, which is well understood and is
widely used (for example, se@3]). By imposing the volume
constraint as a penalty term in the objective function, we obtain
the following formulation:

Minimize J(u,tb):Jo(u,cb)+>\<//DH(dJ)dQ—Vo>

+2iv (//D H(qa)dQ—vo)2

subjectta a(u,v,®)=1(v,®d), WweU

ulr, = Uo, (11)

whereA is the Lagrangian multiplier angis a pre-defined
parameter (typically a very small number). At each iteration,
we fix A and solve Probleml() for ®, then we updat@ and
check for termination criteria. If the termination criteria are not
satisfied, we go to the next iteration.

Because the implicit functio® is fully parameterized, solu-
tion of Problem 11) reduces to searching for an optimal shape in
the design space spanned by paramefeffsin @ and{b¥} in
eachCD';,. The differentiability of® supports rigorous sensitivity
analysis as described in Sectidr2

4.1 Algorithm

To solve the augmented Lagrangian multiplier subproblem
in (11), we use an iterative gradient search method: in each iter-
ation, we find a descent direction (where the objective function
decreases) and move the design variables along this descent di-
rection. In the following, we state a generic algorithm for solving
Problem {) considering the most general case: combination of
free-form and parametric shape optimization. The algorithm can
handle many special cases by updating a chosen subset of the
design variables during the optimization process. The basic al-
gorithm consists of the following steps:

1. Initialize the implicit function ®(x,0) and stepsizeft,
choose\ andy.

2. Solve the augmented Lagrangian multiplier subproblem
Problem (1)

(2.1) Solve the equilibrium equation.
(2.2) Fora chosen sebf parameters,

(2.2a) Calculate derivativeg% and%t(t).
(2.2b) Update the parametetst) = ci(t) + % -At and

bj =bj;+ dzjt(t) -t

(2.3) Check termination criteria for the subproblem. If not
satisfied, go tg2.1). The termination criteria is de-
fined agAJ| < g, wheree is a predefined small positive

number.

3. Update Lagrangian multiplier =X + 2 (/5 H(®)dQ — Vo)

4. Check termination condition. If not satisfied, golo The
termination criteria is defined d8\| < &, whered is a pre-
defined small positive number.

This generic algorithm can handle both free-form and
parametric shape optimization problems. If only free-form
shape optimization is desired, we may only @Bg(x,c(t)) =
yN ci(t)xi(x) to represent the shape. If pure parametric shape
optimization is preferred,(x,b(t)) may be used. The algo-
rithm also supports additional control of topological events and
how the parametric shapes may be used. For example, if nucle-
ation of holes inside the domain is undesirable, we may choose
to perform the sensitivity calculation and update only those para-
meters that affect the shape’s boundary. Or if parametric shapes
are used as obstacles, we may simply force the geometric para-
meters to be constant. These additional controls provide much
flexibility in shape optimization. We will illustrate these features
of the proposed method in Section 5.

4.2 Sensitivity analysis

The full parameterization of the shape optimization problem
transforms it into a sizing problem which has two set of design
variables: one is the coefficients of the B-spline basis functions,
the other is the geometric dimensions. Because the constructed
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level set functior® is differentiable we can perform rigorous the
sensitivity analysis for Probleniq). Since the number of these

boundaryoQ is determined by the derivative of the primitive
level set function defining that portion of the boundary. This

parameters is typically large (mainly because of the number of allows us to decouple the derivative®finto derivatives of indi-

B-spline coefficients), for simplicity, we transform the sensitiv-

ity with respect to each design variable (coefficient or geometric
dimension) to sensitivity with respect to time since each design

variable can be regarded as a time-dependent function.

vidual primitives (see proof ing]).

Theorem 4.4, (General casejn Problem (1), if ®(x;t) =
(b, .. .7¢|f<f,¢‘13, . .,GJE"), and almost every point @Q be-

The results of sensitivity analysis are summarized in the fol- longs to the boundary of exactly one primitive, then

lowing Lemma and Theorems. Lemmal shows the time deriv-
ative of the objective function in Problem 1) for a generic®.
With the parameterization @b, Theoremst.2, 4.3, and4.4 de-

rive explicit expressions for shape sensitivities and establish how
to compute the descent direction for the objective function in
case of free-form, parametric, or combined shape optimization

respectively. The proofs of all results are provideddh [

Lemma 4.1. For Problem (1), the time derivative of the ob-
jective function is

diu,®) 1 do
d o R @2
where
R= —fu—diV(pUn)+%Eijk|€ij(u)5k|(u)
1
Ay <//DH(¢)dQVo>. (13)

Theorem 4.2. (Free-form shape optimization)n Problem
(1), if D(xt) = Ds(x,ct)) =N, ci(t)xi(x), then

{d‘;?) :/ani(x)RdI', i:17...N}

is a descent direction of Problerh).

(14)

Theorem 4.3. (Parametric shape optimizatiorip Problem
(11), if we haved(x,t) = Pp(x,b(t)), then

{dmﬁ)

[ ddp(xb)
L _/aQRdr,j_l,...M} (15)

db;

is a descent direction of Problerh).

In the general case, the boundai® of the shape is de-
fined by the zero level set of the composite functib(x,t) =
(o, D, ®3,...,®5"). The boundaryQ consists oK +
Kp pieces = 0QnaQk, k=1,...,Kj, andr‘,‘) =0Q ﬂaQ';,
k=1,...,Kp. When every point o®Q belongs to the bound-
ary of exactly one primitive, a basic result from the theory of
R-functions states that the derivative of the funct@mon the

{qu(t):/ x!‘(x)RdF,izl,...Nk}, K=1,.... K¢ (16)

|
dt r‘;

and

db(t)
{ T /rk

p

dak(x, bX(t))
B

Rdr, jzl,...Mk},kzl,...,Kp

(17)
is a descent direction of Probler1).

Theoremgt.2and4.3are special cases of the last, most gen-
eral, Theoremt.4. In an unlikely situation that the condition in
Theorem4.4 does not hold, i.e. boundaries from different prim-
itives may become coincident, the derivative on the overlapping
boundaries becomes indeterminate. The ambiguity may be re-
solved in several ways, for example, by perturbing the bound-
aries or by making additional assumptions about the primitives’
behavior at the boundary.

5 Shape control with numerical examples

We now demonstrate shape optimization with parametric,
free-form, and topological controls in various combinations, de-
pending on particular design preferences. The design variables
(B-spline coefficients and/or geometric dimensions) are updated
based on the sensitivity analysis shown in Section 4.2. Observe
that the right hand side of Expressiatd) is zero if support of
a particular functiory;(x) does not intersect the boundary. This
is to be expected in the case of a free-form shape optimization
because the changes in shape are defined in terms of moving the
existing boundaries, and is consistent witl§][ It also means
that a direct implementation of Expressidid), while theoret-
ically well founded, does not allow changes in topology. We
therefore propose an update strategy that permits the evolution of
all parametergc;(t)}, including those in the interior. Observing
that Expression1d) is simply a measurement of the total effect
of the integrand function over the boundary, we define the new
updating criteria as the average value of functbover each in-
dividual B-spline’s support. This is consistent wit] when the
domain is replaced by the boundary, and the integrand function
Ris well defined at all interior points. In this sense, the proposed
strategy is an extension of the sensitivity based approach implied
by Expression14). The numerical results for a short cantilever
beam design problem (see Figuspare used here to illustrate

Copyright (© 2006 by ASME



the effectiveness of the proposed method. If not specified, the Case 3: Parametric, with or without topological changeg-or

volume constraint is half the area of the design domain. The fol-

pure parametric design, the design variables are geometric pa-

lowing parameters are consistently assumed in the examples: therameters{bs,by,...,bu}. We use Theorem.3to update these

Young's elasticity modulug€ = 1, Poisson’s ratiov = 0.3, the
domainD is of size0.1 x 0.05, a distributed forcgp = 200is ap-
plied in a interval of 0.005 around the middle point of the right
edge ofD and the left edge db is fixed, the body forcd = 0.

parameters. Figu@shows the optimal shape of a rectangle with
a circular hole, with the position of the hole as the only design
parameter. Figur@ shows the optimal shape of a rectangle with a
circular hole and a rectangular slot, where positions of both hole

The numerical implementation details are described in the next and slot are used as design variables. Due to the nature of the

section.

Figure 5. Definition of the minimum compliance problem for a short can-
tilever beam.

Case 1: Free-form, without nucleation of holesn case of pure

design problem, no volume constraint is imposed for these two
examples. The topological changes, such as intersection of hole
and the slot, are handled easily without any additional effort.

Ei ]
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(a) Initial design (b) Result at iteration 9

Figure 8. Strain energy distribution of the initial and optimal shapes of a
rectangle with a circular hole. The design variables are the position of the

free-form shape design, we only have the B-spline coefficients | J.. crid size = 50 x 25,

{c1,C2,...,cn} @as design variables. Only the coefficients of those

B-splines whose support intersect the boundary are updated. Fig-

ure 6 shows the results at different stages of the optimization

process. (The color map shows the distribution of strain energy

in this example and all examples that follow.)
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(a) Initial design (b) Iteration 60 (c) Iteration 141

Figure 6. Strain energy distribution of the shapes at different iterations
from the free-form shape optimization process without nucleation of holes.
Only the coefficients of those B-spline basis functions that have support
intersecting the boundary are updated. Grid size = 100x 50.

Case 2: Free-form, with topological changesn this case, all
the B-spline coefficients are updated to allow nucleation of holes
in the interior of the domain. Figuréshows the results at differ-
ent stages of the optimization process.

0 L1465 04 02437505 0 I00MESDR
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(b) Iteration 40
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(a) Iteration 28 (c) Iteration 111

Figure 7. Strain energy distribution of the shapes at different iterations
from the free-form shape optimization process with nucleation of holes.
Every B-spline coefficient is updated during the optimization process.
Grid size = 100x 50.
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(a) Initial design (b) Result at iteration 21

Figure 9. Strain energy distribution of the initial and optimal shapes of
a rectangle with a circular and rectangular slot. The design variables are
the positions of the hole and the slot. Grid size = 50 x 25,

Case 4: Free-form and parametric, without nucleation of
holesIn this case, both the B-spline coefficiedts, ¢y, ...,cn}

and geometric parametef®;,by,...,by} are used as design
variables. To prevent nucleation of holes, we only update the
boundary B-spline coefficients (as in Case 1) and geometric pa-
rameters. Figur&0shows the example of a moving circular hole
inside the domain where the position of the hole needs to be op-
timized.

o I» >
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(a) lteration 40 (b) lteration 80 (c) lteration 135

Figure 10. Strain energy distribution at different iterations during the op-
timization process for free-form shape with a circular hole. Grid size =

100x 50.

Case 5: Free-form and parametric, with topological changes
Just as in Case 2, every B-spline coefficient is updated to
allow nucleation of holes. Geometric parameters are updated to

Copyright (© 2006 by ASME



optimize the parametric shapes. Figdreshows the results at
different stages of the optimization process for a shape with a cir-

6 Implementation
The proposed approach to shape optimization can be imple-

cular hole and a rectangular slot. In this example, we protect the mented in many environments that support stress/strain analysis,
parametric shapes throughout the optimization process (which allow some programmability for parametric functions, and pro-
means the circular hole remains circular and the rectangular slot vide tools for differentiation, and boundary and volume integra-
remains rectangular). This is achieved by simply placing a toler- tion. A potentially challenging task that is likely to dominate
ance zone around each parametric shape and force the B-splineany implementation is numerical integration over an evolving (a

coefficients inside the tolerance zone to be positive.

(a) Initial design (b) Iteration 30

> 2>
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(d) Iteration 60

(c) lteration 40

(e) Iteration 80 (f) Iteration 134

Figure 11. Strain energy distribution at different iterations during the op-
timization process for free-form shape with a circular hole and a rectan-
gular slot. Nucleation of holes is allowed. Grid size = 100x 50.

Case 6: Parametric features as obstacles or attachmenfsg-

priori unknown) geometric domaif2. The task makes imple-
mentation with finite elements challenging because, as the shape
changes, it would require either frequent remeshing or (re) ap-
proximation of the domain by piecewise linear functions.

6.1 Meshfree approach with distance fields

The meshfree method with approximated distances de-
scribed in [L3] is based on the original idea by Kantorovid8]
for solving simple Dirichlet problems, but was fully developed
by Rvachev and his students for general boundary conditions and
problems B1,32]. To paraphrase Rvachev, a physical field can
be represented by a generalized Taylor series by powers of an
approximate distance field to the boundad{, 33].2 Once such
distance fields are constructed, they can be used to construct so-
lutions to boundary value problems that satisfy the prescribed
boundary conditions exactly on all points where the distance
field vanishes. The remainder term in the Taylor series contains
degrees of freedom necessary to approximate differential equa-
tion(s), and it also assures completeness of the sol@nThe

ure 12 shows the optimal shape with a circular hole as a mov- method is essentially meshfree, though a background mesh may

ing obstacle. Figurd3 shows the optimal shape with a circular

be used for integration and visualization purposes. A restricted

disk as a fixed attachment. The obstacle can be combined withimplementation of the method with WEB-Splines is described
free-from shape design using the intersection operation while the in [17], and a complete programming environment supporting

attachment can be implemented by the union operation.

? |

(@) Initial design (b) Optimal shape

Figure 12. Strain energy distribution of the initial and optimal free-form
shape with a circular hole as a moving obstacle. Grid size = 50 x 25.
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(a) Initial design (b) Optimal shape

Figure 13. Strain energy distribution of the initial and optimal free-form
shape with a disk as an attachment. Grid size = 100x 50.

construction, differentiation, and integration of all required func-
tions at run time is described iA9] and was used to implement
the proposed approach to shape optimization.

6.2 Solution procedure

In the context of the structural analysis problem solved in
this paper, we represent components of the displacement vector
u = (up,up) as products of two functions; = wW¥;, i = 1,2,
where wy are distance functions to the fixed portions of the

boundary of the domaif, and functiond¥; = Z a,; 'EJ are lin-

ear combinations of basis functions used to apprOX|mate solution
of the differential equation. Generally, these basis functions can
be defined on a grid that does not conform to the geometric do-
main and arenot related to the basis functions used to construct
the level set function®;. In this paper we approximated compo-
nents of the displacement vector using uniform cartesian grid of

2Rvachev does not use distance fields directly but employs so called “normal-
ized functions” that are constructed using theonRrdtinctions B1]. With that
terminology, a level set function is 0-th level approximation of a distance from

any particular level set. Copyright @ 2006 by ASME



bilinear B-splines. Numerical values of the coefficieaTﬁ are a i
determined by a standard technique that requires minimization
of an energy functionaldb]. As a result we obtain a system of

linear algebraic equations whose solution gives numerical values —mm—m——w—— = —————

GoTEs2 [T 0 12

of the coefficientsa}"‘. Assembly of the matrix and vector of () 50x 25 grid (b) 100x 50 grid (c) 200x 100grid
this system of equations requires differentiation of the approxi-

mate distance fields; and basis functions with respect to spatial Figure 14. Strain energy distribution of the optimal shapes from different
coordinates and integration over non-meshed geometric domaingrid size in the free-form shape optimization with nucleation of holes.
and its boundary that is represented by a level set function. Once

numerical values of the coefﬁciemx?" I are computed, they are ner e

substituted into expressions for components of the displacement  — IS ’ P,.,m_ﬁ_
vectoru. : \ } J

The free-form level set function is initialized as a B-spline L \ J
surface with constant coefficients over the rectangular domain. It “\ ,fj

is then combined with the parametric shapes to obtain the initial : = ,
level set functior® usingR-conjunction and/oR-disjunction as -
appropriate. At each step of optimization, the structural proble
is solved using the meshfree method as described above. The
value ofRin Expression13) is computed from the solution field,  Figure 15. The area ratio and strain energy during optimization process

then the derivative$d‘é—§t)} can be directly calculated from Ex-  for different grid size.

pression 16). Note that the derivative@%} require boundary
integration. The integrand in Expressidtv)is available since ture volume, introduction of more holes will generally increase

the derivatives Of{cé%r} can be easily calculated from the ex-  the efficiency of the structurad infinitum The size of the grid
plicit expression of parametric level set functions. The boundary defines the number of B-splines, which serve as degrees of free-
of each parametric shape is known a priori, however some points dom for the level set surface, and is directly related to the max-
of the parametric boundary may not lie on the boundary of the imum number of possible holes. If we disallow introduction of
final shapeQ. For example, in Figur® only a portion of the new holes, the grid dependence disappears (Fibfishows two
circle is a subset of the boundary after the circle and the rectan- similar shapes from different grid size.) The limit of the con-
gle merge. The boundary points are identified through a simple tinuous grid refinement is often associated with micro-structured
point membership test against the implicitly represented level set materials, the latter also provide the basis for the homogenization
@ = 0. This eliminates the need to track parametric boundaries method.

— a difficult task associated with traditional parametric optimiza-

tion, > >

6.3 Dependence on grid size e T
The algorithm converges rapidly and smoothly to (local) (a) Result from50x 25 grid (b) Result from100x 50 grid
minima for the examples shown in Section 5. For problems that
involve free-form boundaries and allow topological changes, the
results are clearly dependent on the number of B-splines
used to represent the free-form compon@ntof the shape. Fig-
ure 14 shows three different shapes resulting from the same op-
timization problem that also produced the shape in Figyre 7 Conclusions

but with different grids of B-splines:50 x 25, 100x 50 and We proposed a new method for shape optimization that com-
200x 100. Although the final shapes are very different, the val-  pines and subsumes free-form and parametric shape optimization
ues of the objective function are very close to each other. Figure approaches. The resulting space of shapes is fully parameterized
15 shows the values of the objective function and the area ratios by the B-spline coefficients (for the free-form boundaries) and
for the shapes during the optimization process for the three grid geometric dimensional parameters, without restricting the para-
SIZ€¥he observed grid dependence should be expected, since itmeterization to any particular topology. This parametrization
is well known that the original shape optimization problesh (  transforms the difficult shape and topology optimization prob-
is not well posed as stated?, 4]. Without changing the struc- lems into a relatively straightforward sizing problem to which

m (@) The area ratio during opti- (b) The strain energy during optimiza-
mization process tion process

Figure 16. Strain energy distribution of the optimal shapes from different
grid size in the free-form shape optimization without nucleation of holes.

10 Copyright © 2006 by ASME



many gradient-base optimization techniques can be applied. Fur- [8] J. Chen, V. Shapiro, K. Suresh, and I. Tsukanov. Shape op-

ther the differentiability of the constructed level set function sup-

ports rigorous shape sensitivity analysis, where free-form and

parametric shape sensitivity can be treated simultaneously.
The generality and flexibility of the proposed approach are

demonstrated by numerical examples for a two dimensional min-

imum compliance problem. To our knowledge, this is the first

work on shape optimization that combines free-form shape op-

timization and parametric shape optimization. Many existing

timization with topological changes and parametric control.
Technical Report SAL 2006-1, Spatial Automation Labora-
tory, University of Wisconsin, February 2006.

[9] S.Chen and D. A. Tortorelli. Three-dimensional shape op-
timization with variational geometnStructural Optimiza-
tion, 13:81-94, 1997.

[10] Carl de Boor. A Practical Guide to Splines Springer-
Verlag, 2001.

shape optimization methods can be treated as special cases if11] H. A. Eschenauer, H. A. Kobelev, and A. Schumacher. Bub-

our approach. In level set method, a boundary velodjtyis
constructed to guarantee a descent direct&fhd]. This tech-

ble method for topology and shape optimization of struc-
tures. Structural Optimization8:142—-151, 1994.

nique can also be implemented in our approach if we apply level [12] H. A. Eschenauer and N. Olhoff. Topology optimization

set equatior%it’ = —|0d| -V, in Expression 12). Use of shape

functionals to represent level set surfaces for shape optimiza-

tion as proposed ins@] and [3] corresponds to special cases of
free-form optimization into our approach. Last, but not least,
traditional parametric shape optimization is already built in our
approach, but with added ability to control topological changes
throughout the optimization process.
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