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ABSTRACT 
A design sensitivity analysis of high frequency structural-

acoustic problem is formulated and presented. The Energy 

Finite Element Method (EFEM) is used to predict the structural-

acoustic responses in high frequency range, where the coupling 

between the structural and acoustic domain are modeled by 
using radiation efficiency. The continuum design sensitivity 

formulation is derived from the governing equation of EFEM 

and the discrete method is applied in the variation of the 

structural-acoustic coupling matrix. The direct differentiation 

and adjoint variable method are both developed for the 

sensitivity analysis, where the difficulty of the adjoint variable 
method is overcome by solving a transposed system equation. 

Parametric design variables such as panel thickness and material 

damping are considered for sensitivity analysis, and the 

numerical sensitivity results show excellent agreement 

comparing with the finite difference results.  

KEYWORDS 
Structural Acoustics, Design Sensitivity Analysis (DSA), 

Energy Finite Element Method (EFEM), Adjoint Variable 

Method, Radiation Efficiency 

1. INTRODUCTION 
Structure induced sound and vibration has been a concern 

for scientists and engineers for a long time. How to precisely 

predict the structural-acoustic response and design structures for 

the best acoustic comfort with least usage of materials have 

allured thorough research in this area. Finite Element Method 

(FEM) and Boundary Element Method (BEM) are favorite 

choices in solving structural-acoustic problems. Atalla and 
Bernhard [1] summarized the application of FEM and BEM in 

the low frequency structural-acoustic analysis. Numerous 
applications [2-5] have already promoted FEM and BEM an 

industrial standard in Computer Aided Engineering (CAE). 

For the Design Sensitivity Analysis (DSA) using FEM and 

BEM, a lot of research has been done in different applications. 

Ma and Hagiwara [6] derived an eigenvalue and eigenvector 

sensitivity formulation for acoustic-structural coupled problem 
using FEM; Smith and Bernhard [7] developed a shape 

sensitivity formulation of using BEM in radiation problem. Choi 

et al. [8,9] developed the continuum sensitivity formulation for 

coupled structural-acoustic problem using FEM and applied it to 

optimization of passenger vehicles. Kim et al. [10] developed an 

adjoint variable method for a sequential structural-acoustic 
problem using FEM and BEM, which is then used by Dong et 

al. [11] in the design optimization of a complex vehicle structure 

for minimum weight. 

Unfortunately, FEM or BEM cannot always assure to be 

efficient and accurate, especially for high frequency range, 

where the structural response is extremely sensitive to the 
design change. In order to capture the structural characteristic 

length, much smaller mesh size is required for the FEM or BEM 

model, and thus making it computationally expensive or even 

prohibitive. Nefske et al. [12] investigated the requirement of 

the element size for FEM to be accurate in dynamic analysis, 
Bernhard [1] recommended that at least six linear elements or 

three quadratic elements should be required per wavelength for 

an accurate analysis, and thus it is commonly agreed that FEM 

and BEM could only be suitable for the problem with frequency 

up to 200 Hz. 

The difficulty of applying FEM and BEM in high frequency 
range forced researchers look for an alternative method. Lyon 

[13] and Maidanik [14] developed Statistical Energy Analysis 

(SEA) using a modal based approach that is suitable for high 

frequency problems. Due to its easy-to-understand nature, SEA 

has been widely accepted as an analysis tool in practice, 
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especially for large-scale structures. The work done by Chen 

[15,16] in SEA analysis and experimental validation of a full 

vehicle structure to predict the energy flow in the vehicle is one 
of typical applications.  

Although SEA seems suitable to solve high frequency 

problems, its inherent weakness is that it is based on the division 

of sub-structures such that the local modeling details are 

ignored. This weakness keeps SEA away from being a good 

design tool for structural details. In order to overcome this 
disadvantage, Nefske and Sung [17], Wohlever and Bernhard 

[18], Bouthier and Bernhard [19,20,21] developed the governing 

equation for the time and space averaged energy flow between 

coupled structures using a wave approach, which is then 

combined with finite element discretization to form the 

foundation of the Energy Finite Element Method (EFEM). 
EFEM had not been very successful to implement until Langley 

and Heron [22] developed an analytical method to evaluate the 

power transfer coefficient between structural members, and Cho 

[23] developed a formulation to construct the coupling matrix 

based on the power flow conservation between the coupled 

structures. 
Since then, EFEM has been successfully applied to various 

engineering problems. Vlahopoulos et al. [24,25] validated 

EFEM by applying it to a complex ship structure comparing 

with SEA and dense FEA results. Wang [26] used a degenerated 

version of EFEM to analyze the cabin of the heavy-duty truck. 
While the structural-structural EFEM has been successfully 

developed and applied to high frequency problems, the 

structural-acoustic EFEM has not been investigated until Bitsie 

[27] derived the coupling relationship between structural and 

acoustic domains based on the definition of radiation efficiency. 

Zhang and Wang [28] extended EFEM to consider the fluid 

loading on the structural vibration at high frequency. They also 

investigated the effect of the structural radiation damping on the 

EFEM governing equation. 

The flexibility and accuracy of EFEM makes it one of the 

best choices in solving high frequency structural-acoustic 

problems. In order to carry out design optimization using 

EFEM, the sensitivity of EFEM also needs to be developed. 
Comparing with the research efforts which have been done in 

the high-frequency structural-acoustic analysis, not much work 

has been done in design sensitivity analysis. Bitsie and Bernhard 

[27,31] discussed sensitivity of the energy density with respect 

to the material damping, but no rigorous and detailed sensitivity 
formulation was derived. Borlase and Vlahopoulos [32] carried 

out a design optimization of a naval structure using EFEM, but 

the gradient is obtained using the finite difference rather than 

sensitivity calculation. 

Kim et al. [33] developed a rigorous parametric and shape 

design sensitivity formulation for structural systems using 
EFEM, but the structural-acoustic relationship has not been 

addressed. This paper presents a discussion on the structural-

acoustic relationship in EFEM and a detailed derivation of the 

parametric sensitivity formulation for the structural-acoustic 

coupled problem. Both direct differentiation and adjoint variable 

methods are developed and tested using two examples, and 
excellent agreements are observed between sensitivity and finite 

difference results. 
 

2. ENERGY FINITE ELEMENT METHOD FOR HIGH 
FREQUENCY STRUCTURAL-ACOUSTIC PROBLEM 

2.1 Energy Finite Element Method (EFEM) 
The governing equation for EFEM was derived by Nefske 

and Sung for beams [17], Bouthier and Bernhard for plates 

[19,20,21], and Bitsie for acoustic space [27]. Consider a 

coupled structural-acoustic domain as shown in Fig. 1, where 

the governing equations for the structural and acoustic domains 

can be written, respectively, in the form of 
2
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Figure 1. Structural-Acoustic Coupled Domain 

 

In the governing Eqs. (1) and (2), cg is the structural group 

velocity, c is the air speed, ηs and ηa are the hysteresis damping 

factors for the structure and air respectively, ω is the radian 

frequency of structural vibration. The power flow input to the 

structural and acoustic domains are denoted by πs and πa, 

respectively. The primary variables es and ea, which are the time 

and space averaged energy density, are used to characterize the 

structural-acoustic behavior. The governing Eqs. (1) and (2) 
describe the energy conservation in both structural and acoustic 

domains: the incoming energy flow equals to the energy 

dissipated in the system and energy transmitted across the 

structural boundaries.  

Governing Eqs. (1) and (2) are valid only if the structure 

and air do not affect each other except the power flow at the 
interface. However, the structural dynamic characteristics are 

influenced by the contacted fluid, and this effect needs to be 

included in the governing equation of structural vibration. 

Zhang et al. [28] pointed out that the effect of the fluid loading 

on the structural vibration differs by the coincidence frequency 
fc, at which the structural bending wave number kf coincides 

with the acoustic wave number k. For the frequency above the 

coincidence frequency, the effect can be expressed in terms of 

the radiation damping factor. For the frequency below the 

coincidence frequency, the effect is expressed in terms of the 

effective surface mass density (or the effective group bending 
velocity) and the radiation damping factor. Thus, Eq. (1) is 

changed to 
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where ηrad is called the radiation damping, which characterizes 

the capacity of the plate to radiate acoustic energy, defined as 

0
1

rad rad

S
kh

ρ
η σ

ρ α

 
=  
 

  (4) 

In Eq. (4), the structural bending group speed can be 

computed via the formulation cg=2(Dω2
/αρsh)1/4, where D is the 

flexural rigidity of the plate, with α=1 for the frequency ω above 

the coincidence frequency and α=1+ρ0/ρsh(kf
2
-k

2)1/2 for ω 

below the coincidence frequency. 

Equation (4) shows that the radiation damping is a function 

of the structural thickness h, structural mass density ρs, fluid 

mass density ρ0, and σrad, which is defined as radiation 

efficiency, reflecting the interaction between the bending 
vibration of the structure and fluid. The numerical model to 

evaluate σrad is discussed in section 2.2.  

The variational form of the governing Eqs. (2) and (3) can 

be obtained by multiplying both sides by the virtual energy 

density 
s s
e Z∈  and 

a a
e Z∈ , respectively, integrating over the 

structural domain �s and acoustic domain �a, respectively, 

applying divergence theorem, and imposing the interface power 

flow conservation 0
s a

q q+ =  as 
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where the subscripts denote the physical domains on which the 

integration is taken. 

The above variational equation will hold for all 

kinematically admissible virtual energy density 

{ },
s a
e e Z= ∈e , where Z is the space defined as 
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and qs and qa are the power flow along Γsa, which is the 

interface between the structural and acoustic domains. In Eq. (7) 

and (8), H0 is the Sobolev space of order zero [34]. 

In the variational equation, ( ),

s
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 are 

the energy bilinear forms for structural and acoustic domains 

respectively, ( )
s

s
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�  is the structural load linear form, 
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a
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is the acoustic load linear form, ( ), , ,
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 is the 

coupling term between the structural and acoustic domains 

sharing the common boundary Γsa. It should be noted that the 
coupling term exists along the structural discontinuities as well. 

However, for the sake of structural-acoustic design sensitivity 

analysis, only the coupling between structural and acoustic 

domains will be investigated. The detailed discussion of the 

structural-structural coupling relationship and parametric and 

shape design sensitivity formulation can be found in Kim et al. 
[33]. 

The definition of the continuum energy bilinear and load 

linear forms in the variational equation is: 
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There is no easy way to find analytical solution to Eq. (5) 
for complex structural-acoustic problems. However, the 

numerical solution can be obtained by taking advantages of the 

conventional FEM techniques. Therefore, after taking finite 

element discretization and Galerkin approximation using 

interpolation function 
T

i i i

s s s
e = N E , 

T
i i i

a a a
e = N E  (14) 

the approximated energy forms of the variational equation are 
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where NS is the number of the structural finite elements, NA is 

the number of the acoustic finite elements, NJ is the number of 

the finite elements on the interface between the structural and 

acoustic domains.  
Following an assembly process and imposing the essential 

boundary conditions, the approximate form of the variational 

equation becomes 

s s ss
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Figure 2. The Power Flow at The Interface Between  

Structural-Acoustic Domains 

 

The construction of the interface force Q
s
 and Q

a
 in Eq. 

(20) is based on the power flow conservation along the interface 

Γsa [23,27]. Consider the coupled structural-acoustic domain in 

Fig. (2). The net power flow into the structural-acoustic 

interface Γsa, denoted by qs and q
a
, are coming respectively from 

the structural and acoustic domains, and can be written as 

s s s
q q q

+ −

= − , 
a a a

q q q
+ −

= −  (21) 

where “+” indicates the incoming power flow to the joint, and 

“-” indicates the outgoing power flow from the joint. The 
power flow conservation at the interface requires that 

0
s a

q q+ = . If τ
sa

 is used to represent the power transfer 

coefficient from s to a which stands for the structural or acoustic 

domains, respectively, then the outgoing power flow 
s

q
−  and 

a
q
−  

from the joint can be expressed in the form of the incoming 

power flow 
s

q
+  and 

a
q
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where 1
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τ τ+ =  and 1
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τ τ+ = are satisfied according  to 

conservation law. 
The power flow component can be related with the 

corresponding energy density component as [35] 
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According to energy superposition, the total time- and 
space- averaged energy density e

s
 and e

a
 at the joint can be 

expressed in the summation of the incident energy density 

,
s a
e e
+ +  and the scattered energy density ,

s a
e e
− − , which are carried 

by the incident wave and the reflective / transmitted wave 

respectively 
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Premultiply Eq. (24.a) by structural group speed 
g
c  and Eq. 

(24.b) by air speed c  lead to 
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Combination of Eq. (21), (22), (23) and (25) establishes the 

relationship between the power flow and the energy density as 
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τ  is the power transfer coefficient matrix, 
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c  is the group speed matrix and I is a 2 by 2 identity 

matrix.  Thus, the discretized relationship between the power 
flow and energy density is 
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With the definition of the junction matrix Jsa, the global FEM 

equation of Eq. (20) reduces to 

s ss

sa

a a a

      
+ =     

      

E FK 0
J

0 K E F
 (28) 

Solving Eq. (28) will yield the energy density in the 
structural and acoustic domains. From the above derivation, it 

can be seen that the structural and acoustic stiffness matrices Ks 

and Ka are symmetric, but the joint matrix J
sa

 is not symmetric 

because of the fact that the power transfer between the structural 

and acoustic domains is not reciprocal; i.e., the power transfer 

coefficient matrix τ is not symmetric. However, as will be 
shown later in the development of the design sensitivity 

formulation, the adjoint variable method is also applicable to 

non-symmetric case.   

 

2.2 Structural-Acoustic Coupling Relationship 
The structural-acoustic relationship is expressed in term of 

the radiation efficiency σrad, which is defined as the ratio of the 

acoustic power radiated per unit area of a vibrating surface to 
the average acoustic power radiated per unit area of a piston that 

is vibrating with the same average mean square velocity at a 

frequency for which the piston circumference, exceeds the 

acoustic wavelength: kd>>1 where d is the radius of the piston. 

Accordingly, σrad can be expressed as 

2

0

rad

P

cSv
σ

ρ
=

�
 (29) 

where P is the radiated power, S is the plate surface area, ρ0 is 

the fluid density, c is the speed of the sound in fluid, 2
v�  is the 

averaged mean square velocity. 

The radiation efficiency σrad quantifies the interaction 

between the structural bending wave and the acoustic wave. A 

lot of research has been done for accurate numerical evaluation 

of the radiation efficiency [37,38,39], and in this paper the 
formulation proposed by Leppington [39] is used: 
4 Copyright © 2003 by ASME 



( )
1 2

2 2

1

2

1 2
ln

1 1
1

1
1

1

rad

c

c

a b

kab

a

r

f

f

µ µ

µ µ
πµ µ

σ
λ

−

   + + 
+   

− −    −

  

= +  
 


 

− 
 

  

c

c

c

f f

f f

f f

<

≈

>

 (30) 

where r=a/b is the ratio between the characteristic length a and 

b of the plate, �=kf/k is the wave number ratio, λc=c/fc is the 
acoustic wavelength at the coincidence frequency.   

For an aluminum plate with the dimension of 

1m×1m×0.001m, its capacity to radiate acoustic energy is 

illustrated in Fig. (3) by the radiation efficiency during the 

frequency between 100 Hz to 10000 Hz, all below the 
coincidence frequency, which is 75 kHz. It shows the interaction 

between the plate and air increases along with the frequency, 

explaining why the radiation effect needs to be added to the 

governing equation for high frequency problems.  

Based on the radiation efficiency, Bitsie [27] discussed the 

structural-acoustic coupling and derived the power transfer 
coefficients between structure (plate) and air, which are 

expressed as 

2 2
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2 2
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τ τ

βσ βσ

−

= =

+ +

 (31) 

where β=cρ0/csρs is the ratio of characteristic impedance. 

 

 
Figure 3. Radiation Efficiency of an Aluminum Plate 

 

For the acoustic-structural coupling, Fahy [40] derived a 
formula for predicting the capacity of a surface to absorb sound 

energy as a ratio of the absorbed power to the incident power, 

which is also expressed in terms of the radiation efficiency as 
2
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As the result of conservation law 1
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2

0
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σ
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Equations (31)-(33) provide the elements of the power 

transfer coefficient matrix τ. From the design point of view, the 

power transfer coefficients are functions of parametric design 

variables, such as thickness, material properties, etc. With the 

analytical computation of τ, the EFEM can be used effectively 
 

as a design tool by developing and implementing its sensitivity 

formulation. 

3. DESIGN SENSITIVITY ANALYSIS 

Design sensitivity is the gradient of a performance measure 

with respect to design variables, which indicates that how the 

design change will affect the structural performance. In EFEM, 

the structural vibrational energy density and acoustic energy 

density, which are the primary interests in high frequency 

structural–acoustic problem, usually serve as performance 
measures. In this paper, parametric design sensitivity analysis is 

considered, where the parameters of the structural or acoustic 

property, such as the thickness of a structural panel, hysteresis 

damping factor, the material property of the structural panel or 

acoustic medium, etc, are chosen as design variables.  

3.1 Definition of a Variation 

Given a parametric design variable u, a corresponding 

performance measure ψ is a function that depends on the design 

u and ψ(u) is assumed to be continuous with respect to design u. 

If the design u is perturbed in an arbitrary direction δu with a 

perturbation size ε, then the variation of ψ(u) in the direction of 

δu is defined as 

0
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If the variation of a function is continuous and linear with 

respect to δu, then the function is differentiable (more precisely, 
it is Fréchet differentiable). For complicated problems, it is not 

easy to prove differentiability of a general function with respect 

to the design, which is not investigated in this paper. 

In this paper, the EFEM primary variables e
s
 and e

a
 are 

assumed to be differentiable. That is, the first variation of e at 

current design u and in the direction of δu can be written as 
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Based on the differentiability of e
s
 and e

a
, the energy 

bilinear and load linear forms in the variational Eq. (6) is 
assumed to be differentiable with respect to the design, which 

means that their first variations are continuous and linear in δu. 

Thus, the variations of the energy bilinear and load linear forms 

are 

0

( , ) ( , )
u s s u u s s

d
a e e a e e

d
δ εδ

ε
ε

+

=

′ ≡ �  (37) 

0

( , ) ( , )
u a a u u a a

d
d e e d e e

d
δ εδ

ε
ε

+

=

′ ≡ �  (38) 

0

( ) ( )
u s u u s

d
e e

d
δ εδ

ε
ε

+

=

′ ≡� �  (39) 

0

( ) ( )
u a u u a

d
p e p e

d
δ εδ

ε
ε

+

=

′ ≡  (40) 

( ) ( )
0

, , , , , ,
u s a s a u u s a s a

d
b e e e e b e e e e

d
δ δ

ε
ε

+

=

′ ≡  (41) 

Unlike in Section (2), the subscript u is used in the energy 

bilinear and load linear forms here, instead of the physical 
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domains as in Eq. (5), to emphasize design dependence of these 

forms. 

In the above expressions, ē
s
 and ē

a
 are independent of ε and 

δu, while ẽ
s
 and ẽ

a
 denote that the state variables e

s
 and e

a
 are 

being held fixed when the first variation is taken. The subscript 

δu denotes that the first variation of the energy form is evaluated 

in the direction of δu.  

 

3.2 Direct Differentiation Method 

The variational Eq. (5) can be differentiated with respect to 

design u to obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , , , ,

, , , , ,

u s s u s a s a u a a

u s u a u s s u s a s a u a a

a e e b e e e e d e e

e p e a e e b e e e e d e e
δ δ δ δ δ

′ ′ ′ ′+ +

′ ′ ′ ′ ′= + − − −�
(42

Solution to Eq. (42) yields to the variation of the energy 

density. In the above equation, the left side represents the terms 
implicitly dependent on the design and the right side are the 

terms explicitly depending on the design. Comparison of Eq. 

(42) with the variational Eq. (5) shows that the left side of Eq. 

(42) has the exactly the same form with Eq. (5) except the 

argument e
s
 and e

a
 are replaced by e

s
′ and e

a
′. Hence, to solve 

Eq. (42), we can take advantage of the factorized system matrix 

of Eq. (5) except a different load coming from the contribution 

from the explicitly dependent terms on the right side. 
Generally, a structural–acoustic performance measure can 

be written in integral form as 

( , , )g u dψ
Ω

= ∇ Ω∫∫ e e  (43)

where { }
s a
e e=e , and function g is continuously 

differentiable with respect to its arguments. Functional in the 

form of Eq. (43) can be used to represent various structural–

acoustic performance measures. For example, the volume 

integration of energy density represents the total energy in the 

structure; the integration of product of the Dirac measure with 
the energy density will recover the energy density at a point; and 

the power flow can be represented by the integration of product 

of the group speed and the energy density as well. 

The variation of the functional in Eq. (43) is 

( )
, , ,

:
u

g u g g dψ δ
∇

Ω

′ ′ ′= + ⋅ + ∇ Ω∫∫ e e
e e  (44)

Equation (44) is obtained using the fact that ( )′ ′∇ = ∇e e , 

which means that the order of the variation with respect to the 

design variable and the gradient with respect to the coordinate 

variable can be interchanged as they are independent to each 

other [41]. For a given performance measure that can be written 

in the form of (44), the variation can be readily evaluated using 

Eq. (44) once the variation of energy density e′ is obtained from 
Eq. (42). In order to compute the variation of the energy density 

e′, the appropriate load vector needs to be constructed based on 

the terms on the right side of Eq. (42) which are explicitly 
depending on the design variable u. 

In the following section, the plate and air will be considered 

as design components. For the parametric design sensitivity 

analysis, the panel thickness, structural material property, 

structural and acoustic hysteresis damping factors are 

considered as design parameters. The external loading will be 
assumed to be independent of design in this paper. 
 

) 

 

 

If the structural hysteresis damping factor η
s is used as a 

design variable, then only 
u

a
δ
′ in Eq. (5) is related to the design 

perturbation. As the results, all the explicitly dependent terms on 
the right side of Eq. (42) will vanish except 

 
( )

2

2
( , )

s

s

g

s s s s s s s

s rad

c
a e e e e e e dδη ω δη

η η ωΩ

 
′ ≡ − ∇ ⋅∇ + Ω 

+  
∫∫  (45) 

Similarly, if the acoustic hysteresis damping factor is used 
as design variable, then, all the explicitly dependent terms will 

vanish except 
2

2
( , )

a

a

a a a a a a a

a

c
d e e e e e e d
δη

ω δη
η ωΩ

 
′ ≡ − ∇ ⋅∇ + Ω 

 
∫∫  (46) 

The design changes in damping factors do not affect the 

structural-acoustic coupling relationship. However, 

perturbations in the panel thickness and material property will 
affect the capacity of the plate to radiate the acoustic energy. 

Thus, not only the energy bilinear form a
u
 but also the coupling 

term b
u
 will be changed due to design change in the panel 

thickness and material property.  

In addition, the energy bilinear form a
u
 depends on the 

structural bending group speed and the radiation damping. If the 
thickness of the plate changes, the variation of the bending 

group speed is 
3

2 2 2 24

2 2

1

2
g

s ss s

D D D
c h D

h hh h

ω ω ω ω
δ δ δ δα

αρ αραρ α ρ

−

  
= − + −  

   
 (47) 

where 
( )

2

2
4 1

Eh
D hδ δ

ν
=

−

, along with δα=0 if the frequency ω 

is above the coincidence frequency and 

( )

2

0 0

2 2 2 3
3 2 2

4

g

s f
s g f

h c

h k k hc k k

ρ ω ρ
δα δ δ

ρ ρ

= − +

−
−

 (48) 

if the frequency ω is below the coincidence frequency. 
The variation of the radiation damping defined in Eq. (4) is 

0 0 0

2 2

rad rad

rad rad

ss s

h
khkh kh

ρ σ ρ σ ρ
δη δ δα δσ

ρ αρ α ρ α
= − − +  (49) 

The variation of the radiation efficiency, which appears in Eq. 

(49) can be computed according to the Leppington’s model in 

Eq. (30) as 

( )

( )

( )

( )

( )( )

( )

( )

( )

2

1 22
2

2 2

2

3 2 2

2 2 2

2
3

3 2 2

3
2

22

2

2 12

1 1
1

2 1 1 2 2
ln

1 1
1

12 11 1
1

4

12 1 1
1

4

g

g
rad

s

c c

sc

a b

kab

a b
c

c k
kab

a c
h

f E hr

f c
h

f f E h

µ

µ µπµ µ

µ µ µ ω
δ

µ µδσ π µ µ

ρ ν
δ

λ π

ρ ν
δ

π

−

  ++  + +  − − −  
 
 + −   + 

+    − −  =  − 
 − − +   

 − − −   

c

c

c

f f

f f

f f

<

≈

>

 (50) 

Consequently, the variation of the energy bilinear form a
u
 is 

derived as 
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( )

( )

2

2

( , )
2s

g

s s rad s s rad

s rad

h s s

g

s s g

s rad

c
e e e e

a e e

c
e e c d

δ

δη ω δη
η η ω

δ
η η ω

Ω


− ∇ ⋅∇ +

+′ ≡


            − ∇ ⋅∇ Ω
+ 

∫∫  (51) 

If the structural thickness and damping design variables 
perturb simultaneously, the explicitly dependent term of the first 

variation of the energy bilinear form a
u
 will be the summation of 

Eq. (45) and (51), which is 
s

u h
a a aδ δη δ
′ ′ ′= + . 

Unlike the energy bilinear form a
u
, the variation of the 

coupling term b
u
 is difficult to be expressed in continuum form. 

However, the discrete form of 
u

b
δ
′  still can be derived from the 

variation of the joint matrix J
sa

 in Eq. (27) as 

( ) ( )( )

( )( ) ( )

1 1

1 1

sa

− −

− −

′ ′ ′= − + + − +

′      − − + +

J τ I τ c I τ I τ c

I τ I τ τ I τ c

 (52) 

where 
0

0 0

g
cδ 

′ =  
 

c  and 
ss as

sa aa

h
τ τ

δ
τ τ

′ ′ 
′ =  ′ ′ 

τ , with 
ij

ij
h

τ

τ

∂
′ =

∂
 

which can be obtained from Eqs. (31)-(33). Matrices c′ and τ′ 
are the variation of the group speed matrix and the power 

transfer coefficient matrix correspondingly. 

Thus, the variation 
u

b
δ
′  of the coupling term in terms of the 

finite element discretization becomes 

{ }( , , , )
T

s

u s a s a s a sa

a

b e e e e
δ

 
′ ′≈   

 

E
E E J

E
 (53) 

Similarly, the continuum variations in Eqs. (45), (46) and (51) 

of the energy bilinear forms can be approximated by finite 

element discretization as  

{ }( , ) ( , )

fic
T

s

u s s u a a s a fic

a

a e e d e e u
δ δ

δ
  

′ ′+ ≈   
  

F
E E

F
 (54) 

where the vector { }
T

fic fic

s a F F is called the fictitious load, which 

can be computed based on the variations of the explicitly 

dependent forms listed in Eqs. (45), (46) and (51). 

The discrete form of the direct differentiation in Eq. (42) thus 

reduces to 
fic

s s ss

sa sa fic
a a a a

uδ
′         

′+ = − −        ′          

E E FK 0
J J

0 K E E F

 (55) 

Equation (55) has the exactly the same system matrix as Eq. 

(28). Thus, the factorized system matrix can be used again to 

solve for the first variation of the energy density, with a 

different load vector obtained from the first variation of the joint 

matrix and energy bilinear forms.  
Once the sensitivity of the energy density is obtained, the 

sensitivity of the performance measure can be obtained by 

evaluating the integration in Eq. (44) using the FEM shape 

function and Gaussian quadrature. 

 

3.3 Adjoint Variable Method 
The direct differentiation method derived in the previous 

section is efficient when the number of performance measures is 

more than the number of the design variables, while adjoint 

variable method is efficient when the number of performance 
 

measure is less than the number of the design variables. In a 

structural-acoustic problem, the energy densities at certain few 

points usually serve as the performance measures. In this case, 
the adjoint variable method is more efficient than the direct 

differentiation method. 

For a given performance measure which can be written in 

the form of Eq. (43), the first variation of the performance 

measure in Eq. (44) is comprised of two parts: the first term 

explicitly depends on design u, but the last two terms are related 
to design u through the primary variable e. The adjoint variable 

method starts from the definition of an adjoint equation with the 

adjoint load defined by replacing ′e  and ′∇e  in the last two 

terms in Eq. (44) by λ  and ∇λ , respectively, as 

( ) ( ) ( ) ( )
, ,

, , , , , :
u s s u s a s a u a a
a b d g g dλ λ λ λ λ λ λ λ

∇
Ω

+ + = ⋅ + ∇ Ω∫ e e
λ λ    

                                                                       Z∀ ∈λ  (56) 

where { }
s a
e e=e

T, { }
T

s a
λ λ=λ . 

Since the adjoint equation is satisfied for arbitrary Z∈λ , it 

can be evaluated at { }
T

s a
e e′ ′=λ to yield 

( ) ( ) ( ) ( )
, ,

, , , , , :
u s s u s s s a u s a
a e b e e d e g g dλ λ λ λ

∇
Ω

′ ′ ′ ′ ′ ′+ + = ⋅ + ∇ Ω∫ e e
e e  (57) 

Similarly, since Eq. (42) is valid for arbitrary 

{ },
s a
e e Z= ∈e , it can be evaluated at { }

s a
λ λ=e  to yield 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , , , ,

, , , , ,

u s s u s a s a u a a

u s u a u s a u s a s a u a a

a e b e e d e

p a e b e e d e
δ δ δ δ δ

λ λ λ λ

λ λ λ λ λ λ

′ ′ ′ ′+ +

′ ′ ′ ′ ′ = + − − −�

 (58) 

Comparison between Eq. (57) and (58) leads to 

( ) ( ) ( )

( ) ( ) ( )

, ,

:

, , , , ,

u s u a

u s a u s a s a u a a

g g d p

a e b e e d e

δ δ

δ δ δ

λ λ

λ λ λ λ

∇
Ω

′ ′ ′ ′⋅ + ∇ Ω = +

′ ′ ′            − − −

∫ e e
e e �

 (59) 

Substitution of Eq. (59) into Eq. (44) leads to the expression of 

the variation of the performance measure as 

( ) ( )

( ) ( ) ( )

,

, , , , ,

u u s u a

u s a u s a s a u a a

g ud p

a e b e e d e

δ δ

δ δ δ

ψ δ λ λ

λ λ λ λ

Ω

′ ′ ′= Ω + +

′ ′ ′     − − −

∫ �

 (60) 

The above expression does not need the information for the 

sensitivity of primary variable e; it only involves the direct 

relationship of the performance measure ψ with the design 
variable u, and the domain integration of the primary variable e 

and the adjoint variable λ.  

To obtain the adjoint variables, Eq. (56) is discretized to 

obtain 

{ }
T

ss adj

sa

a a

    
+ =    

    

ΛK 0
J F

0 K Λ
 (61) 

where adj
F  comes from the finite element approximation of the 

right side of Eq. (56). For example, if the performance measure 

is the energy density at node i of the FEM model, the 
corresponding adjoint load will be a unit load at node i. 

Equation (60) can be evaluated as 

{ }
,

T
fic

u sag udψ δ
Ω

′ ′= Ω − +∫ J E F Λ  (62) 

where E={Es Ea}
T and the fictitious load vector 

{ }
T

fic fic fic

s a=  F F F is defined in Eq. (54). 
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Note that the solution Λ to the adjoint Eq. (61) requires 

solving the equation with the transposed system matrix, which is 
un-symmetric. However, this difficulty can be overcome once 

the factorized matrix from the analysis process is kept for 

further usage. As shown in Eq. (62), the adjoint variable method 

requires the calculation of the fictitious load Ffic and the 

variation of joint matrix sa
′J , which appear in the direct 

differentiation method in Eq. (55). Thus, it requires the same 
computational efforts as the direct differentiation method, 

except for the number of matrix equations that need to be 

solved. The direct differentiation method solves the system of 

matrix equations according to the number of design variables, 

while the adjoint variable method solves it according to the 

number of performance measures. 

4. NUMERICAL EXAMPLES 

4.1 7-plate Engine Foundation Model 
In the literature of energy flow approaches to solve high 

frequency structural-acoustic problem, a ship engine foundation 

model has been investigated and studied thoroughly by several 

researchers. Lyon [36] validated the SEA method by dividing 
the model into 7 and 12 substructures and studying the 

significance of the in-plane energy in energy transmission. 

Vlahopoulos [24] discretized the 7-plate model into finite 

elements (Fig. 4) and applied EFEM to get same results as 

Lyon.  
In complex structures, the structural-structural coupling 

exits as well as the structural-acoustic coupling, so in 7-plate 

model, the structural-structural relationship and its design 

sensitivity will be carried out to verify accuracy of the proposed 

sensitivity analysis method. The energy finite element model is 

comprised of 603 nodes, 480 rectangular elements, and 24 
structural-structural joints. There are three types of joints in the 

model: “L”, “T” and “cross”. The power transfer coefficients are 

computed using the method developed by Langley and Heron 

[22], and the sensitivity calculation is based on Kim et al. [33]. 

 

 
Figure 4. EFEM Model of a 7-plate Ship Engine Foundation 

 

The objective of this example is to verify the sensitivity of 

the energy ratios between the substructures comparing with the 

finite difference results. Since calculation of the sensitivity of 
the energy ratio needs the information of the sensitivity of the 

energy density of related nodes, the direct differentiation 

methods is used instead of the adjoint variable method. 

A unit power flow input at frequency f=2000 Hz is applied 

at the center of plate 1. The power flow contributed from each 
 

plate is first computed on the frequency average around one 

third octave band. Figure 5 shows that how the contributions 

from each substructure to the total power flow will be varied 
due to the design change in thickness of plate 1, which is 

allowed to change up to 50% of its initial value, 0.0082m. It can 

be seen that the thickness change will not only influence its own 

capacity to dissipate power, but also change the power transfer 

coefficients between its adjacent plates. The change of power 

flow distribution can serve as a good reference for design 
change. 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

            a) Thickness h1=0.0041m       b) Thickness h1=0.0123m 

Figure 5. Power Flow Distribution at Different Design 

 

The bending energy ratio between the first, fifth and 

seventh plate are computed by  

i

i i

ij

j j

j

e
E

r
E e

= =

∑

∑
 (63) 

Taken the thickness of plate 1 as the design, the sensitivity 

of the energy ratio can be computed as 

2 2

i j i j i j i j

i j i i i j i ii

ij

j

j j

j j

e e e e e e e e
E

r
E

e e

′ ′    ′ ′− −′         ′ = = =       
   
   

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

 (64) 

The bending energy ratios between plates 1, 5 and 7 are 

plotted in Fig. 6. As the thickness of plate 1 increases, the power 
transfer coefficients from plate 1 to 2 increases, however, due to 

more energy dissipated in plate 1, the energy ratio of plate 2 

over plate 1 still decreases as shown in Fig. 6. Also, in order to 

compensate the power flow balance in the structure, the energy 

ratios between plate 5, 7 and plate 1 change correspondingly. 

Figure 6 provides a good illustration for understanding the 
energy distribution in the structure due to design change.  

 

17.2% 

35.5% 

8.2% 

3.7% 

7.3% 17.3% 

10.8% 

Input Power  

21.6% 

23.7% 

8.9% 

5.9% 

6.6% 15.8% 

17.5% 

Input Power 
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Figure 6. Energy Ratio Due to Design Change in Plate 1 

 

Figure 7 compares the sensitivity results with the finite 
difference results, where “DDM” stands for Direct 

Differentiation Method for DSA, “FDM” stands for Finite 

Difference Method. In this example, the central finite difference 

method with 1% perturbation is used to compute the sensitivity. 

Excellent agreement is observed between the two sets of the 

results to the point that two curves are on top of each other for 
all energy ratios. It also shows that all the three energy ratios are 

more sensitive around the initial design (0.0082m).  

 
Figure 7. Comparison of Design Sensitivity Results vs. Finite 

Difference Results 

 

4.2 Simplified Passenger Vehicle Model 
A practical application of EFEM is to design a vehicle 

structure with optimized NVH performance and ride comfort. 

For this purpose, a simplified passenger vehicle model is 

constructed and studied (Fig. 8). The corresponding EFEM 

model (Fig. 9) is comprised of 118 structural plate elements and 

92 solid acoustic elements. The sub-structures of the passenger 

vehicle model are integrated through 56 structural-structural 
joints and 118 structural-acoustic joints. Choi et al. [8] used the 

same model to test the proposed sensitivity formulation using 

FEM for low frequency range.  

The passenger vehicle model is comprised of seven 

different structural panels, made of aluminum. Those panels 

have the property of Young’s modulus E = 71 Gpa, Poisson’s 

ratio ν = 0.33, density ρs = 2700 kg/m3, and all the panels have 

the same thickness h = 10 mm at initial design; The acoustic 

space enclosed by the structural panels are filled with air, of 

density ρ0 = 1.02 kg/m3 and wave speed c = 343 m/s. 
 

 
Figure 8. Simplified Passenger Vehicle Model 

 

      
                  a) Structure part       b)Acoustic part 

Figure 9. EFEM Model of Simplified Passenger Vehicle 

 

The input power flow is at the four corners, which is 

obtained from 

21 1

2
in

F Real
Z

π
 

=  
 

 (65) 

where F is the magnitude of the input force and Z is the 

mechanical impedance of the plate. At a high frequency of 5000 

Hz, if an approximation derived by Cremer and Heckl [35] is 

used to evaluate the mechanical impedance as Z=8ωρsh/kf
2, then 

the input power can be computed from 
22

16

f

in

s

k F

h
π

ωρ
=  (66) 

The energy distribution in the acoustic medium is 

calculated using EFEM based on the frequency average around 

one third octave band under applied power flow. The acoustic 

energy is converted to the root mean square acoustic pressure 

using the approximation 
0

p c eρ= . The sound pressure in 

terms of decibel level is plotted in Fig. 10.  Figure 10(a) 
illustrates the sound pressure at the boundary of the acoustic 

medium, while Figure 10(b) shows the acoustic pressure at a 

longitudinal cross section of the acoustic medium. Black color 

indicates high sound pressure; white color stands for low sound 

pressure. It can be seen that although the variation for the sound 

pressure in the acoustic medium is very small, the energy 
propagation and decay still makes the sound pressure reduce 

from the boundary to the center.  
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(a) Acoustic Pressure Distribution at  

the Boundary of the Acoustic Medium 

 
(b) Acoustic Pressure Distribution at a 

Longitudinal Cross Section of the Acoustic Medium 

Figure 10. Interior Noise Distribution in Acoustic Medium by 

EFEM 

 
Performance measures are chosen as the energy densities at 

two acoustic points and two structural points, with coordinates 

at 
1

a

x = (4.0,0.25,1.0), 
2

a

x = (3.0,-0.25,1.0), 
1

s

x = (4.0,0.25,0.5), 

and 
2

s

x = (3.0,-0.25,0.5). Thicknesses of selected structural 

panels are considered as design variables. Adjoint variable 

method is used to compute the sensitivity coefficients, which are 
shown in Table 1-3. The central finite difference method with 

1% perturbation is used for the finite difference results, which is 

agreed very well with the sensitivity results. It is noted that 

when the thickness of panel 1 is chosen as a design variable, the 

term 
uδ
′�  needs to be evaluated since the input power flow 

computed from Eq. (66) depends on the thickness as well. 

 
Table 1. Sensitivity Results for h1 (Thickness of Panel 1)  

as Design Variable 

Node 
ψ(u-δu) ψ(u) ψ(u+δu) 

 

Finite 
Difference 

∆ψ 

Sensitivity 

ψ′∆ε 

∆ψ/ψ′∆ε 

×100 

(%) 

1

a

x  96.0632 95.9687 95.8753 -0.93928E-01 -0.93924E-01 100.0045 

2

a

x  96.0617 95.9672 95.8739 -0.93909E-01 -0.93905E-01 100.0045 

1

s

x  87.2688 87.1135 86.9597 -0.15452E+00 -0.15452E+00 100.0022 

2

s

x  87.2682 87.1129 86.9591 -0.15451E+00 -0.15451E+00 100.0022 

 

 

 

 

 

 

Table 2. Sensitivity Results for h3 (Thickness of Panel 3)  

as Design Variable 

Node 
ψ(u-δu) ψ(u) ψ(u+δu) 

 

Finite 

Difference 

∆ψ 

Sensitivity 

ψ′∆ε 

∆ψ/ψ′∆ε 

×100 
(%) 

1

a

x  96.0632 95.9685 95.8753 -0.33595E-02 -0.33587E-02 100.0215 

2

a

x  96.0617 95.9671 95.8739 -0.34197E-02 -0.34190E-02 100.0214 

1

s

x  87.2688 87.0886 86.9597 0.66850E-02 0.66843E-02 100.0106 

2

s

x  87.2682 87.0880 86.9591 0.66871E-02 0.66864E-02 100.0106 

 

Table 3. Sensitivity Results for h4 (Thickness of Panel 4)  

as Design Variable 

 

Node 
ψ(u-δu) ψ(u) ψ(u+δu) 

 

Finite 
Difference 

∆ψ 

Sensitivity 

ψ′∆ε 

∆ψ/ψ′∆ε 

×100 

(%) 

1

a

x  95.9705 959685 95.9666 -0.19606E-02 -0.19601E-02 100.0260 

2

a

x  95.9690 95.9670 95.9652 -0.18762E-02 -0.18757E-02 100.0265 

1

s

x  87.0856 87.0894 87.0932 0.38114E-02 0.38109E-02 100.0131 

2

s

x  87.0850 87.0889 87.0926 0.38099E-02 0.38094E-02 100.0132 

 
In order to see the effect of the plate thickness changes, the 

sensitivity of the sound pressure at the acoustic point 
1

a

x  with 

respect to the plate thickness is plotted in Figure 11. White color 
indicates maximum negative sensitivity, and black color 

indicates minimum negative sensitivity. It can be seen that 

structural panel 1 has the maximum negative effect to the sound 

pressure at 
1

a

x , while the two side panels 6 and 7 have the 

second largest contribution, which are followed by panel 3 and 

4. The sound pressure at 
1

a

x  is least sensitive to the changes of 

thicknesses of the front and rear panels 2 and 5. 
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Figure 11. Sensitivity of the Sound Pressure at Point 

1

a

x  with 

Respect to Thickness 

 

Figure 12 illustrates that dependence of the energy densities 

at 
1

a

x  and 
1

s

x  on the thickness of panel 1.  When the design is 

ranging 50%-150% of the initial thickness, the sound pressure at 

1

a

x  changes 10.705 dB, corresponding to more than 70% 

reduction in magnitude. At the same time, the energy density at 

the structural point 
1

s

x  decreases 16.416 dB, which is equivalent 

to 97.3% reduction. This indicates that design change in the 

structural thickness is an effective way to change the 

performance measure. The DSA results illustrated in Fig. 13 
confirm excellent agreement compared with the finite difference 

results.  

 
Figure 12. Performance Measures at Observation Points 

1

a

x  

and 
1

s

x  with Thickness of Panel 1 as Design Variable 

 

 
Figure 13. Sensitivity Results for h1 (Thickness of Panel 1) 

as Design Variable 
(AVM--Adjoint variable Method; FDM—Finite Difference Method) 
 

 

In practical design, dampings of the structure or acoustic 

medium could serve as design variables. As shown in Fig. 14, 

the sound pressure at 
1

a

x  changes with the damping factor of 

panel 1 when the damping of structural panel 1 is ranging ≤50% 
of the initial value (i.e., 0.0005 to 0.0015), the sound pressure at 

1

a

x  will decrease 0.548 dB, which is equivalent to 6.1% 

reduction. The corresponding sensitivity coefficients are plotted 

in Fig. 15, which show excellent agreement with the finite 

difference results. It is interesting to note that the sensitivity 

coefficients is almost linear in structural damping, implying 

using material damping as design will be more effective when 
the damping value is relatively lower. 

 

Table 4. Sensitivity Results for η1 (Damping of Panel 1)  

as Design Variable  

Node 
ψ(u-δu) ψ(u) ψ(u+δu) 

 

Finite 
Difference 

∆ψ 

Sensitivity 

ψ′∆ε 

∆ψ/ψ′∆ε 

×100 
(%) 

1

a

x  95.9739 95.9684 95.9630 -0.54734E-02 -0.54734E-02 100.0001 

2

a

x  95.9725 95.9670 95.9615 -0.54734E-02 -0.54734E-02 100.0001 

1

s

x  87.0961 87.0905 87.0850 -0.55452E-02 -0.55452E-02 100.0001 

2

s

x  87.0955 87.0899 87.0844 -0.55492E-02 -0.55492E-02 100.0001 

 

 
Figure 14. Performance Measure at Observation Points 

1

a

x  with 

Damping of Panel 1 as Design Variable 

 
Figure 15. Sensitivity Results: Damping of Panel 1 as Design 

Variable 
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As most of the energy dissipation occurs near the power 

excitation, the thickness of the structural panel which carries the 

power input will most significantly influence the performance 
measure. Choosing the structural damping of the excitation 

panel as design, though, may not be as effective as the structural 

thickness of the excitation panel. However, it is still more 

effective than the design variables that are the thicknesses of 

other panels. Figure 16 shows the sensitivity of the sound 

pressure at 
1

a

x  with respect to the structural damping. Similar to 

the sensitivity with respect to the thickness, structural panel 1 

has the highest sensitivity, followed by panel 4, panels 6, 7 and 

3. The front and rear panels (2 and 5) contribute the lowest 
sensitivity. Comparing Table 1 through Table 4, it is interesting 

to note that the contribution from damping, although, is smaller 

than the contribution from the thickness of panel 1, it is still 

higher than other structural panel thicknesses. Thus, when the 

design modification is considered, the thickness change of panel 

1 is the most effective, followed by the damping change in the 
different panels, and then the thickness change in other 

structural panels.  

 

 
Figure 16. Sensitivity of the Sound Pressure at Point 

1

a

x  with 

Respect to Damping 

 
The sensitivity information provides the design engineer 

directions to improve the design. For example, in order to 

reduce the energy density around point 
1

a

x , increasing the 

thickness of structural panel 1 may be the most effective way to 

do because the thickness change will affect not only the 

structural radiation damping, but also change the structural-

acoustic coupling relationship. On the other hand, changing the 

damping in panels will not influence the structural-acoustic 
power transfer coefficients. However, higher damping will help 
 

reduce the energy concentration at observation points. 

Eventually, the DSA information can be utilized by a gradient-

based optimization algorithm to search for optimum design. 

5. SUMMARY 

A continuum approach of computing the sensitivity for high 

frequency structural-acoustic problem using EFEM is developed 

and presented. The structural-acoustic coupling relationship 

characterized by radiation efficiency is carefully reviewed for 

the purpose of DSA development. Both the direct differentiation 
and adjoint variable methods are considered where the 

sensitivity formulation is developed in continuum form and the 

variation of structural-acoustic coupling relationship is derived 

from discrete form. Two numerical examples, the 7-plate ship 

engine foundation model and simplified passenger vehicle 

model are considered for numerical testing, and sensitivity 
results demonstrate excellent agreements comparing with the 

finite difference results and provide a direction for design 

modification and design optimization. 
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